Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 1/2019

26.10.2018

Strain-Path Dependence of \( \{ 10\bar{1}2\} \) Twinning in a Rolled Mg–3Al–1Zn Alloy: Influence of Twinning Model

verfasst von: Lingyu Zhao, Xiaoqian Guo, Adrien Chapuis, Yunchang Xin, Qing Liu, Peidong Wu

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In magnesium and its alloys, \( \{ 10\bar{1}2\} \) tension twinning is an important deformation mode and is highly dependent on the strain path. Although the \( \{ 10\bar{1}2\} \)-twinning behavior has been extensively modeled, the effects of twinning models on the predicted results has seldom been compared. In this study, two typical twinning models, predominant twin reorientation (PTR) and twinning-detwinning (TDT), were chosen to simulate the \( \{ 10\bar{1}2\} \)twinning-predominant deformations of a Mg alloy AZ31 rolled plate, in compression along the transverse direction (TD-c) and in tension along the normal direction (ND-t), and the results were compared with experimental data. In addition to the strain-stress curves in the ND-t and TD-c, six other flow curves were used to determine the material-parameter inputs for the simulations with the elastic visco-plastic self-consistent (EVPSC) model. Compared with the PTR model, the TDT model permits better curve fitting and texture prediction. The PTR model cannot fit the TD-c and ND-t flow stresses simultaneously, whereas the TDT model can. The best-fit parameters for the two models are identical at low strains but diverge somewhat at high strains. The simulated twin volume fractions are similar in the two models, but the predicted textures are significantly different. The PTR model can only reproduce the texture at strains over 5 pct in the TD-c and cannot reproduce the deformed texture in the ND-t. In contrast, the TDT model can reproduce all the experimental textures. To fit both the compression and tension curves well, strong latent hardening of the critical resolved shear stress (CRSS) for \( \{ 10\bar{1}2\} \) twinning by other twinning systems (htt) is necessary. The htt favors the twin variant with the highest Schmid factor in compression. The htt increases the CRSS for all \( \{ 10\bar{1}2\} \) twinning systems in tension, but the CRSS for the dominant twinning system remains relatively low in compression.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat 1. M.R. Barnett: Mater. Sci. Eng. A, 2007, vol. 464 (1–2), pp. 1–7.CrossRef 1. M.R. Barnett: Mater. Sci. Eng. A, 2007, vol. 464 (1–2), pp. 1–7.CrossRef
2.
Zurück zum Zitat 2. S.H. Park, S.-G. Hong, and C.S. Lee: Scripta Mater., 2010, vol. 62 (4), pp. 202–05.CrossRef 2. S.H. Park, S.-G. Hong, and C.S. Lee: Scripta Mater., 2010, vol. 62 (4), pp. 202–05.CrossRef
3.
Zurück zum Zitat 3. H. Yu, C. Li, Y. Xin, A. Chapuis, X. Huang, and Q. Liu: Acta Mater., 2017, vol. 128, pp. 313–26.CrossRef 3. H. Yu, C. Li, Y. Xin, A. Chapuis, X. Huang, and Q. Liu: Acta Mater., 2017, vol. 128, pp. 313–26.CrossRef
4.
Zurück zum Zitat 4. S.-G. Hong, S.H. Park, and C.S. Lee: Acta Mater., 2010, vol. 58, pp. 5873–85.CrossRef 4. S.-G. Hong, S.H. Park, and C.S. Lee: Acta Mater., 2010, vol. 58, pp. 5873–85.CrossRef
5.
Zurück zum Zitat 5. D.W. Brown, S.R. Agnew, M.A.M. Bourke, T.M. Holden, S.C. Vogel, and C.N. Tomé: Mater. Sci. Eng. A, 2005, vol. 399 (1–2), pp. 1–12.CrossRef 5. D.W. Brown, S.R. Agnew, M.A.M. Bourke, T.M. Holden, S.C. Vogel, and C.N. Tomé: Mater. Sci. Eng. A, 2005, vol. 399 (1–2), pp. 1–12.CrossRef
6.
Zurück zum Zitat 6. M. Knezevic, A. Levinson, R. Harris, R.K. Mishra, R.D. Doherty, and S.R. Kalidindi: Acta Mater., 2010, vol. 58 (19), pp. 6230–42.CrossRef 6. M. Knezevic, A. Levinson, R. Harris, R.K. Mishra, R.D. Doherty, and S.R. Kalidindi: Acta Mater., 2010, vol. 58 (19), pp. 6230–42.CrossRef
7.
Zurück zum Zitat 7. X.Q. Guo, A. Chapuis, P.D. Wu, Q. Liu, and X. Mao: Mater. Des., 2016, vol. 98, pp. 333–43.CrossRef 7. X.Q. Guo, A. Chapuis, P.D. Wu, Q. Liu, and X. Mao: Mater. Des., 2016, vol. 98, pp. 333–43.CrossRef
8.
Zurück zum Zitat 8. S.-G. Hong, S.H. Park, and C.S. Lee: Scripta Mater., 2011, vol. 64 (2), pp. 145–48.CrossRef 8. S.-G. Hong, S.H. Park, and C.S. Lee: Scripta Mater., 2011, vol. 64 (2), pp. 145–48.CrossRef
9.
Zurück zum Zitat 9. Y. Pei, A. Godfrey, J. Jiang, Y.B. Zhang, W. Liu, and Q. Liu: Mater. Sci. Eng. A, 2012, vol. 550, pp. 138–45.CrossRef 9. Y. Pei, A. Godfrey, J. Jiang, Y.B. Zhang, W. Liu, and Q. Liu: Mater. Sci. Eng. A, 2012, vol. 550, pp. 138–45.CrossRef
10.
Zurück zum Zitat 10. B. Wang, R. Xin, G. Huang, and Q. Liu: Mater. Sci. Eng. A, 2012, vol. 534, pp. 588–93.CrossRef 10. B. Wang, R. Xin, G. Huang, and Q. Liu: Mater. Sci. Eng. A, 2012, vol. 534, pp. 588–93.CrossRef
11.
Zurück zum Zitat 11. S. Mu, J.J. Jonas, and G. Gottstein: Acta Mater., 2012, vol. 60 (5), pp. 2043–53.CrossRef 11. S. Mu, J.J. Jonas, and G. Gottstein: Acta Mater., 2012, vol. 60 (5), pp. 2043–53.CrossRef
12.
Zurück zum Zitat 12. C. Guo, R. Xin, C. Ding, B. Song, and Q. Liu: Mater. Sci. Eng. A, 2014, vol. 609, pp. 92–101.CrossRef 12. C. Guo, R. Xin, C. Ding, B. Song, and Q. Liu: Mater. Sci. Eng. A, 2014, vol. 609, pp. 92–101.CrossRef
13.
Zurück zum Zitat 13. C. Guo, R. Xin, J. Xu, B. Song, and Q. Liu: Mater. Des., 2015, vol. 76, pp. 71–76.CrossRef 13. C. Guo, R. Xin, J. Xu, B. Song, and Q. Liu: Mater. Des., 2015, vol. 76, pp. 71–76.CrossRef
14.
Zurück zum Zitat 14. C. Lou, X. Zhang, and Y. Ren: Mater. Charact., 2015, vol. 107, pp. 249–54.CrossRef 14. C. Lou, X. Zhang, and Y. Ren: Mater. Charact., 2015, vol. 107, pp. 249–54.CrossRef
15.
Zurück zum Zitat 15. Z.-Z. Shi, Y. Zhang, F. Wagner, P.-A. Juan, S. Berbenni, L. Capolungo, J.-S. Lecomte, and T. Richeton: Acta Mater., 2015, vol. 83, pp. 17–28.CrossRef 15. Z.-Z. Shi, Y. Zhang, F. Wagner, P.-A. Juan, S. Berbenni, L. Capolungo, J.-S. Lecomte, and T. Richeton: Acta Mater., 2015, vol. 83, pp. 17–28.CrossRef
16.
Zurück zum Zitat 16. L. Jiang, J.J. Jonas, R.K. Mishra, A.A. Luo, A.K. Sachdev, and S. Godet: Acta Mater., 2007, vol. 55 (11), pp. 3899–3910.CrossRef 16. L. Jiang, J.J. Jonas, R.K. Mishra, A.A. Luo, A.K. Sachdev, and S. Godet: Acta Mater., 2007, vol. 55 (11), pp. 3899–3910.CrossRef
17.
Zurück zum Zitat 17. M. R. Barnett, M.D. Nave, and A. Ghaderi: Acta Mater., 2012, vol. 60 (4), pp. 1433–43.CrossRef 17. M. R. Barnett, M.D. Nave, and A. Ghaderi: Acta Mater., 2012, vol. 60 (4), pp. 1433–43.CrossRef
18.
Zurück zum Zitat 18. P.D. Wu, X.Q. Guo, H. Qiao, and D.J. Lloyd: Mater. Sci. Eng. A, 2015, vol. 625, pp. 140–45.CrossRef 18. P.D. Wu, X.Q. Guo, H. Qiao, and D.J. Lloyd: Mater. Sci. Eng. A, 2015, vol. 625, pp. 140–45.CrossRef
19.
Zurück zum Zitat 19. K. Hazeli, J. Cuadra, P.A. Vanniamparambil, and A. Kontsos: Scripta Mater., 2013, vol. 68 (1), pp. 83–86.CrossRef 19. K. Hazeli, J. Cuadra, P.A. Vanniamparambil, and A. Kontsos: Scripta Mater., 2013, vol. 68 (1), pp. 83–86.CrossRef
20.
Zurück zum Zitat 20. P. Dobroň, F. Chmelík, S. Yi, K. Parfenenko, D. Letzig, and J. Bohlen: Scripta Mater., 2011, vol. 65 (5), pp. 424–27.CrossRef 20. P. Dobroň, F. Chmelík, S. Yi, K. Parfenenko, D. Letzig, and J. Bohlen: Scripta Mater., 2011, vol. 65 (5), pp. 424–27.CrossRef
21.
Zurück zum Zitat 21. A. Ghaderi and M.R. Barnett: Acta Mater., 2011, vol. 59 (20), pp. 7824–39.CrossRef 21. A. Ghaderi and M.R. Barnett: Acta Mater., 2011, vol. 59 (20), pp. 7824–39.CrossRef
22.
Zurück zum Zitat 22. O. Muránsky, M.R. Barnett, D.G. Carr, S.C. Vogel, and E.C. Oliver: Acta Mater., 2010, vol. 58 (5), pp. 1503–17.CrossRef 22. O. Muránsky, M.R. Barnett, D.G. Carr, S.C. Vogel, and E.C. Oliver: Acta Mater., 2010, vol. 58 (5), pp. 1503–17.CrossRef
23.
Zurück zum Zitat 23. R.A. Lebensohn and C.N. Tomé: Acta Metall. Mater., 1993, vol. 41, pp. 2611–24.CrossRef 23. R.A. Lebensohn and C.N. Tomé: Acta Metall. Mater., 1993, vol. 41, pp. 2611–24.CrossRef
24.
Zurück zum Zitat 24. P.A. Turner and C.N. Tomé: Acta Metall. Mater., 1994, vol. 42, pp. 4143–53.CrossRef 24. P.A. Turner and C.N. Tomé: Acta Metall. Mater., 1994, vol. 42, pp. 4143–53.CrossRef
25.
Zurück zum Zitat 25. S.R. Agnew, M.H. Yoo, and C.N. Tomé: Acta Mater., 2001, vol. 49, pp. 4277–89.CrossRef 25. S.R. Agnew, M.H. Yoo, and C.N. Tomé: Acta Mater., 2001, vol. 49, pp. 4277–89.CrossRef
26.
Zurück zum Zitat 26. S.R. Agnew and Ö. Duygulu: Int. J. Plast., 2005, vol. 21 (6), pp. 1161–93.CrossRef 26. S.R. Agnew and Ö. Duygulu: Int. J. Plast., 2005, vol. 21 (6), pp. 1161–93.CrossRef
27.
Zurück zum Zitat 27. S.R. Agnew, C.N. Tomé, D.W. Brown, T.M. Holden, and S.C. Vogel: Scripta Mater., 2003, vol. 48 (8), pp. 1003–08.CrossRef 27. S.R. Agnew, C.N. Tomé, D.W. Brown, T.M. Holden, and S.C. Vogel: Scripta Mater., 2003, vol. 48 (8), pp. 1003–08.CrossRef
28.
Zurück zum Zitat 28. H. Wang, P.D. Wu, J. Wang, and C.N. Tomé: Int. J. Plast., 2013, vol. 49, pp. 36–52.CrossRef 28. H. Wang, P.D. Wu, J. Wang, and C.N. Tomé: Int. J. Plast., 2013, vol. 49, pp. 36–52.CrossRef
29.
Zurück zum Zitat 29. H. Qiao, P.D. Wu, X.Q. Guo, and S.R. Agnew: Scripta Mater., 2016, vol. 120, pp. 71–75.CrossRef 29. H. Qiao, P.D. Wu, X.Q. Guo, and S.R. Agnew: Scripta Mater., 2016, vol. 120, pp. 71–75.CrossRef
30.
Zurück zum Zitat 30. W.B. Hutchinson and M.R. Barnett: Scripta Mater., 2010, vol. 63 (7), pp. 737–40.CrossRef 30. W.B. Hutchinson and M.R. Barnett: Scripta Mater., 2010, vol. 63 (7), pp. 737–40.CrossRef
31.
Zurück zum Zitat 31. A. Jain and S.R. Agnew: Mater. Sci. Eng. A, 2007, vol. 462 (1–2), pp. 29–36.CrossRef 31. A. Jain and S.R. Agnew: Mater. Sci. Eng. A, 2007, vol. 462 (1–2), pp. 29–36.CrossRef
32.
Zurück zum Zitat 32. H. Wang, B. Raeisinia, P.D. Wu, S.R. Agnew, and C.N. Tomé: Int. J. Solids. Struct., 2010, vol. 47 (21), pp. 2905–17.CrossRef 32. H. Wang, B. Raeisinia, P.D. Wu, S.R. Agnew, and C.N. Tomé: Int. J. Solids. Struct., 2010, vol. 47 (21), pp. 2905–17.CrossRef
33.
Zurück zum Zitat 33. Y.B. Chun and C.H.J. Davies: Mater. Sci. Eng. A, 2011, vol. 528 (9), pp. 3489–95.CrossRef 33. Y.B. Chun and C.H.J. Davies: Mater. Sci. Eng. A, 2011, vol. 528 (9), pp. 3489–95.CrossRef
34.
Zurück zum Zitat 34. F. Kabirian, A.S. Khan, and T. Gnäupel-Herlod: Int. J. Plast., 2015, vol. 68, pp. 1–20.CrossRef 34. F. Kabirian, A.S. Khan, and T. Gnäupel-Herlod: Int. J. Plast., 2015, vol. 68, pp. 1–20.CrossRef
35.
Zurück zum Zitat 35. G. Proust, C.N. Tomé, A. Jain, and S.R. Agnew: Int. J. Plast., 2009, vol. 25 (5), pp. 861–80CrossRef 35. G. Proust, C.N. Tomé, A. Jain, and S.R. Agnew: Int. J. Plast., 2009, vol. 25 (5), pp. 861–80CrossRef
36.
Zurück zum Zitat 36. A.L. Oppedal, H. El Kadiri, C.N. Tomé, G.C. Kaschner, S.C. Vogel, J.C. Baird, and M.F. Horstemeyer: Int. J. Plast., 2012, vols. 30–31, pp. 41–61.CrossRef 36. A.L. Oppedal, H. El Kadiri, C.N. Tomé, G.C. Kaschner, S.C. Vogel, J.C. Baird, and M.F. Horstemeyer: Int. J. Plast., 2012, vols. 30–31, pp. 41–61.CrossRef
37.
Zurück zum Zitat 37. P.A. Lynch, M. Kunz, N. Tamura, and M.R. Barnett: Acta Mater., 2014, vol. 78, pp. 203–12.CrossRef 37. P.A. Lynch, M. Kunz, N. Tamura, and M.R. Barnett: Acta Mater., 2014, vol. 78, pp. 203–12.CrossRef
38.
Zurück zum Zitat 38. W. Wu, H. Qiao, K. An, X. Guo, P.D. Wu, and P.K. Liaw: Int. J. Plast., 2014, vol. 62, pp. 105–20.CrossRef 38. W. Wu, H. Qiao, K. An, X. Guo, P.D. Wu, and P.K. Liaw: Int. J. Plast., 2014, vol. 62, pp. 105–20.CrossRef
39.
Zurück zum Zitat C. Ma, A. Chapuis, X.Q. Guo, L. Zhao, P.D. Wu, Q. Liu, and X. Mao: Mater. Sci. Eng. A, 2017, vol. 682, pp. 332–40.CrossRef C. Ma, A. Chapuis, X.Q. Guo, L. Zhao, P.D. Wu, Q. Liu, and X. Mao: Mater. Sci. Eng. A, 2017, vol. 682, pp. 332–40.CrossRef
40.
Zurück zum Zitat 40. H. Wang, P.D. Wu, C.N. Tomé, and J. Wang: Mater. Sci. Eng. A, 2012, vol. 555, pp. 93–98.CrossRef 40. H. Wang, P.D. Wu, C.N. Tomé, and J. Wang: Mater. Sci. Eng. A, 2012, vol. 555, pp. 93–98.CrossRef
41.
Zurück zum Zitat 41. T. Ebeling, C. Hartig, T. Laser, and R. Bormann: Mater. Sci. Eng. A, 2009, vol. 527 (1–2), pp. 272–80.CrossRef 41. T. Ebeling, C. Hartig, T. Laser, and R. Bormann: Mater. Sci. Eng. A, 2009, vol. 527 (1–2), pp. 272–80.CrossRef
42.
Zurück zum Zitat 42. Z.Q. Wang, A. Chapuis, and Q. Liu: Trans. Nonferr. Met. Soc., 2015, vol. 25 (11), pp. 3595–3603.CrossRef 42. Z.Q. Wang, A. Chapuis, and Q. Liu: Trans. Nonferr. Met. Soc., 2015, vol. 25 (11), pp. 3595–3603.CrossRef
43.
Zurück zum Zitat 43. H. Abdolvand and M.R. Daymond: Acta Mater., 2012, vol. 60, pp. 2240–48.CrossRef 43. H. Abdolvand and M.R. Daymond: Acta Mater., 2012, vol. 60, pp. 2240–48.CrossRef
44.
Zurück zum Zitat 44. L.Y. Zhao, A. Chapuis, Y. Xin, and Q. Liu: J. Alloys Compd., 2017, vol. 710, pp. 159–65.CrossRef 44. L.Y. Zhao, A. Chapuis, Y. Xin, and Q. Liu: J. Alloys Compd., 2017, vol. 710, pp. 159–65.CrossRef
45.
Zurück zum Zitat 45. P. Chen, B. Li, D. Culbertson, and Y. Jiang: Mater. Sci. Eng. A, 2017, vol. 709, pp. 40–45.CrossRef 45. P. Chen, B. Li, D. Culbertson, and Y. Jiang: Mater. Sci. Eng. A, 2017, vol. 709, pp. 40–45.CrossRef
46.
Zurück zum Zitat 46. H. Wang, P.D. Wu, C.N. Tomé, and Y. Huang: J. Mech. Phys. Solids, 2010, vol. 58, pp. 594–612.CrossRef 46. H. Wang, P.D. Wu, C.N. Tomé, and Y. Huang: J. Mech. Phys. Solids, 2010, vol. 58, pp. 594–612.CrossRef
47.
Zurück zum Zitat 47. R.A. Lebensohn, C.N. Tomé, and U.F. Kocks: Acta Metall. Mater., 1991, vol. 39, pp. 2667–80.CrossRef 47. R.A. Lebensohn, C.N. Tomé, and U.F. Kocks: Acta Metall. Mater., 1991, vol. 39, pp. 2667–80.CrossRef
48.
Zurück zum Zitat 48. A. Chapuis, Z.Q. Wang, and Q. Liu: Mater. Sci. Eng. A, 2016, vol. 655, pp. 244–50.CrossRef 48. A. Chapuis, Z.Q. Wang, and Q. Liu: Mater. Sci. Eng. A, 2016, vol. 655, pp. 244–50.CrossRef
49.
Zurück zum Zitat 49. F. Wang and S.R. Agnew: Int. J. Plast., 2016, vol. 81, pp. 63–86.CrossRef 49. F. Wang and S.R. Agnew: Int. J. Plast., 2016, vol. 81, pp. 63–86.CrossRef
50.
Zurück zum Zitat 50. H.H. Yu, Y.C. Xin, M.Y. Wang, and Q. Liu: J. Mater. Sci. Technol., 2018, vol. 34, pp. 248–56.CrossRef 50. H.H. Yu, Y.C. Xin, M.Y. Wang, and Q. Liu: J. Mater. Sci. Technol., 2018, vol. 34, pp. 248–56.CrossRef
51.
Zurück zum Zitat 51. J.J. Bhattacharyya, F. Wang, P.D. Wu, W.R. Whittington, H.E. Kadiri, and S.R. Agnew: Int. J. Plast., 2016, vol. 81, pp. 123–51.CrossRef 51. J.J. Bhattacharyya, F. Wang, P.D. Wu, W.R. Whittington, H.E. Kadiri, and S.R. Agnew: Int. J. Plast., 2016, vol. 81, pp. 123–51.CrossRef
52.
Zurück zum Zitat 52. B. Wang, L. Deng, C. Adrien, N. Guo, Z. Xu, and Q. Li: Mater. Charact., 2015, vol. 108, pp. 42–50.CrossRef 52. B. Wang, L. Deng, C. Adrien, N. Guo, Z. Xu, and Q. Li: Mater. Charact., 2015, vol. 108, pp. 42–50.CrossRef
53.
Zurück zum Zitat 53. H. Wang, P.D. Wu, K.P. Boyle, and K.W. Neale: Int. J. Solids. Struct., 2011, vol. 48, pp. 1000–10.CrossRef 53. H. Wang, P.D. Wu, K.P. Boyle, and K.W. Neale: Int. J. Solids. Struct., 2011, vol. 48, pp. 1000–10.CrossRef
54.
Zurück zum Zitat 54. H. El Kadiri, J. Kapil, A.L. Oppedal, L.G. Hector, S.R. Agnew, M. Cherkaoui, and S.C. Vogel: Acta Mater., 2013, vol. 61 (10), pp. 3549–63.CrossRef 54. H. El Kadiri, J. Kapil, A.L. Oppedal, L.G. Hector, S.R. Agnew, M. Cherkaoui, and S.C. Vogel: Acta Mater., 2013, vol. 61 (10), pp. 3549–63.CrossRef
55.
Zurück zum Zitat 55. O. Muránsky, M.R. Barnett, V. Luzin, and S. Vogel: Mater. Sci. Eng. A, 2010, vol. 527 (6), pp. 1383–94.CrossRef 55. O. Muránsky, M.R. Barnett, V. Luzin, and S. Vogel: Mater. Sci. Eng. A, 2010, vol. 527 (6), pp. 1383–94.CrossRef
56.
Zurück zum Zitat 56. J. Wang, I.J. Beyerlein, and C.N. Tomé: Scripta Mater., 2010, vol. 63 (7), pp. 741–46.CrossRef 56. J. Wang, I.J. Beyerlein, and C.N. Tomé: Scripta Mater., 2010, vol. 63 (7), pp. 741–46.CrossRef
57.
Zurück zum Zitat 57. A. Chapuis and Q. Liu: Comput. Mater. Sci., 2015, vol. 97, pp. 121–26CrossRef 57. A. Chapuis and Q. Liu: Comput. Mater. Sci., 2015, vol. 97, pp. 121–26CrossRef
58.
Zurück zum Zitat 58. S.H. Park, S.-G. Hong, and C.S. Lee: Scripta Mater., 2010, vol. 62 (9), pp. 666–69.CrossRef 58. S.H. Park, S.-G. Hong, and C.S. Lee: Scripta Mater., 2010, vol. 62 (9), pp. 666–69.CrossRef
59.
Zurück zum Zitat 59. H. Qiao, M.R. Barnett, and P.D. Wu: Int. J. Plast., 2016, vol. 86, pp. 70–92.CrossRef 59. H. Qiao, M.R. Barnett, and P.D. Wu: Int. J. Plast., 2016, vol. 86, pp. 70–92.CrossRef
60.
Zurück zum Zitat 60. A. Chapuis, Y. Xin, X. Zhou, and Q. Liu: Mater. Sci. Eng. A, 2014, vol. 612, pp. 431–39.CrossRef 60. A. Chapuis, Y. Xin, X. Zhou, and Q. Liu: Mater. Sci. Eng. A, 2014, vol. 612, pp. 431–39.CrossRef
Metadaten
Titel
Strain-Path Dependence of Twinning in a Rolled Mg–3Al–1Zn Alloy: Influence of Twinning Model
verfasst von
Lingyu Zhao
Xiaoqian Guo
Adrien Chapuis
Yunchang Xin
Qing Liu
Peidong Wu
Publikationsdatum
26.10.2018
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 1/2019
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-018-4955-y

Weitere Artikel der Ausgabe 1/2019

Metallurgical and Materials Transactions A 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.