Skip to main content
Top
Published in: Meccanica 9/2018

03-01-2018

Stress–softening effect of SBR/nanocomposites by a phenomenological Gent–Zener viscoelastic model

Author: Evagelia Kontou

Published in: Meccanica | Issue 9/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An experimental study of a tensile loading–unloading procedure, as well as multi-cyclic response in a strain-controlled program of a Styrene-Butadiene (SBR) elastomer reinforced with four different weight fractions of carbon nanotubes (CNTs) has been performed. The Mullins effect features, namely hysteresis, damage and residual strain, exhibited by the SBR/nanocomposites were analyzed by a modified Gent–Zener rheological model, and a damage function. Especially for the multi-cyclic stress–strain curves, phenomenological equation of the model parameters evolution with strain were also introduced. The same loading procedure was applied in pre-stressed materials, revealing a different stress–strain response due to strain prehistory. The model has been proven to accurately capture the loading–unloading behavior, the residual strain, hysteresis loops as well as the multi-cyclic behavior of the SBR/CNT nanocomposites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Flügge W (1967) Viscoelasticity. Blaisdel Publishing Company, WalthamMATH Flügge W (1967) Viscoelasticity. Blaisdel Publishing Company, WalthamMATH
2.
go back to reference Christensen RM (1982) Theory of viscoelasticity: an introduction. Academic Press, New York Christensen RM (1982) Theory of viscoelasticity: an introduction. Academic Press, New York
3.
go back to reference Green AE, Rivlin RS (1957) The mechanics of nonlinear materials with memory part I. Arch Ration Mech Anal 1:1CrossRefMATH Green AE, Rivlin RS (1957) The mechanics of nonlinear materials with memory part I. Arch Ration Mech Anal 1:1CrossRefMATH
4.
go back to reference Findley WN, Onaran K (1968) Product form of kernel functions for nonlinear viscoelasticity of PVC under constant rate stressing. Trans Soc Rheol 12:117–242 Findley WN, Onaran K (1968) Product form of kernel functions for nonlinear viscoelasticity of PVC under constant rate stressing. Trans Soc Rheol 12:117–242
5.
go back to reference Lockett FJ (1972) Nonlinear viscoelastic solids. Academic Press, LondonMATH Lockett FJ (1972) Nonlinear viscoelastic solids. Academic Press, LondonMATH
7.
go back to reference Caruthers JM, Adolf DB, Chamberd RS, Shrikhande P (2004) A thermodynamically consistent nonlinear viscoelastic approach for modeling glassy polymers. Polymer 45:4577–4597CrossRef Caruthers JM, Adolf DB, Chamberd RS, Shrikhande P (2004) A thermodynamically consistent nonlinear viscoelastic approach for modeling glassy polymers. Polymer 45:4577–4597CrossRef
8.
go back to reference Schapery RA (1997) Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics. Mech Time Depend Mater 1:209–240ADSCrossRef Schapery RA (1997) Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics. Mech Time Depend Mater 1:209–240ADSCrossRef
9.
go back to reference Tervoort TA, Klompen ETJ, Govaert LEJ (1996) A multi-mode approach to finite, three dimensional nonlinear viscoelastic behavior of polymer glasses. Rheology 40(5):779–797CrossRef Tervoort TA, Klompen ETJ, Govaert LEJ (1996) A multi-mode approach to finite, three dimensional nonlinear viscoelastic behavior of polymer glasses. Rheology 40(5):779–797CrossRef
10.
go back to reference McKenna GB, Zapas LJ (1980) The normal stress response in nonlinear viscoelastic materials: some experimental findings. Soc Rheol 24(4):367–377ADSCrossRef McKenna GB, Zapas LJ (1980) The normal stress response in nonlinear viscoelastic materials: some experimental findings. Soc Rheol 24(4):367–377ADSCrossRef
11.
go back to reference Papanicolaou GC, Zaoutsos SP, Cardon AH (1999) Prediction of the nonlinear viscoelastic response of unidirectional fiber composites. Compos Sci Technol 59:1311–1319CrossRef Papanicolaou GC, Zaoutsos SP, Cardon AH (1999) Prediction of the nonlinear viscoelastic response of unidirectional fiber composites. Compos Sci Technol 59:1311–1319CrossRef
12.
go back to reference Khan AS, Lopez-Ramies O, Kazmi R (2006) Thermo-mechanical large deformation response and constitutive modeling of viscoelastic polymers over a wide range of strain rates and temperatures. Int J Plast 22:581–601CrossRefMATH Khan AS, Lopez-Ramies O, Kazmi R (2006) Thermo-mechanical large deformation response and constitutive modeling of viscoelastic polymers over a wide range of strain rates and temperatures. Int J Plast 22:581–601CrossRefMATH
13.
go back to reference Guedes RM (2010) Nonlinear viscoelastic analysis of thick-walled cylindrical composite pipes. Int J Mech Sci 52:1064–1073CrossRef Guedes RM (2010) Nonlinear viscoelastic analysis of thick-walled cylindrical composite pipes. Int J Mech Sci 52:1064–1073CrossRef
14.
go back to reference Papanicolaou GC, Xepapadaki A, Abiramia G, Jiga G (2008) Viscoelastic characterizationof a glass-epoxy composite. Mater Plast 45:221–227 Papanicolaou GC, Xepapadaki A, Abiramia G, Jiga G (2008) Viscoelastic characterizationof a glass-epoxy composite. Mater Plast 45:221–227
15.
go back to reference Haward RN, Thackray G (1968) The use of mathematical model to describe isothermal stress-strain curves in glassy polymers. Proc Lond Ser Soc A302:453–472ADSCrossRef Haward RN, Thackray G (1968) The use of mathematical model to describe isothermal stress-strain curves in glassy polymers. Proc Lond Ser Soc A302:453–472ADSCrossRef
16.
go back to reference Boyce MC, Parks M, Argon AS (1988) Large inelastic deformation of glassy polymers part I: rate dependent constitutive model. Mech Mater 7(1):15–33CrossRef Boyce MC, Parks M, Argon AS (1988) Large inelastic deformation of glassy polymers part I: rate dependent constitutive model. Mech Mater 7(1):15–33CrossRef
17.
go back to reference Boyce MC, Arruda EM (1990) An experimental and analytical investigation of the large strain compressive and tensile response of glassy polymers. Polym Eng Sci 30:1288–1298CrossRef Boyce MC, Arruda EM (1990) An experimental and analytical investigation of the large strain compressive and tensile response of glassy polymers. Polym Eng Sci 30:1288–1298CrossRef
18.
go back to reference Wu PD, van der Giessen E (1993) On improved network models for rubber elasticity and their application to orientation hardening in glassy polymers. J Mech Phys Solids 41:427–456ADSCrossRefMATH Wu PD, van der Giessen E (1993) On improved network models for rubber elasticity and their application to orientation hardening in glassy polymers. J Mech Phys Solids 41:427–456ADSCrossRefMATH
19.
go back to reference Khan AS, Baig Muneer, Hamid Syed, Zhang Hao (2010) Thermo-mechanical large deformation responses of hydrogenated nitrile butadiene rubber (HNBR): experimental results. Int J Solids Struct 47:2653–2659CrossRefMATH Khan AS, Baig Muneer, Hamid Syed, Zhang Hao (2010) Thermo-mechanical large deformation responses of hydrogenated nitrile butadiene rubber (HNBR): experimental results. Int J Solids Struct 47:2653–2659CrossRefMATH
20.
go back to reference Fatt MSH, Xin Ouyang (2008) three-dimensional constitutive equations for styrene butadiene rubber at high strain rates. Mech Mater 40:1–16CrossRef Fatt MSH, Xin Ouyang (2008) three-dimensional constitutive equations for styrene butadiene rubber at high strain rates. Mech Mater 40:1–16CrossRef
22.
go back to reference Mullins L, Tobin NR (1957) Theoretical model for the elastic behavior of filled- reinforced vulcanized rubber. Rubber Chem Technol 30:555–571CrossRef Mullins L, Tobin NR (1957) Theoretical model for the elastic behavior of filled- reinforced vulcanized rubber. Rubber Chem Technol 30:555–571CrossRef
23.
go back to reference Bueche F (1960) Molecular basis for the Mullins effect. J Appl Polym Sci 4:107–114CrossRef Bueche F (1960) Molecular basis for the Mullins effect. J Appl Polym Sci 4:107–114CrossRef
24.
go back to reference Govindjee S, Simo JC (1991) A micro-mechanically based continuum damage model for carbon black-filled rubbers incorporating Mullins’ effect. J Mech Phys Solids 39(1):87–112ADSMathSciNetCrossRefMATH Govindjee S, Simo JC (1991) A micro-mechanically based continuum damage model for carbon black-filled rubbers incorporating Mullins’ effect. J Mech Phys Solids 39(1):87–112ADSMathSciNetCrossRefMATH
25.
go back to reference Mullins L (1969) Softening of rubber by deformation. Rubber Chem Technol 42:339–362CrossRef Mullins L (1969) Softening of rubber by deformation. Rubber Chem Technol 42:339–362CrossRef
27.
28.
go back to reference Diani J, Fayolle B, Gilormini P (2009) A review on the Mullins effect. Eur Polym J 45:601–612CrossRef Diani J, Fayolle B, Gilormini P (2009) A review on the Mullins effect. Eur Polym J 45:601–612CrossRef
31.
go back to reference Klüppel M (2003) Filler-reinforced elastomers/sanning force microscopy. In: Abe A, Dušek K, Kobayashi S (eds) Advances in polymer science, 1st edn, vol 164. Springer, Berlin Klüppel M (2003) Filler-reinforced elastomers/sanning force microscopy. In: Abe A, Dušek K, Kobayashi S (eds) Advances in polymer science, 1st edn, vol 164. Springer, Berlin
32.
go back to reference Qi HJ, Boyce MC (2004) Constitutive model for stretc-induced softening of the stress-stretch behavior of elastomeric materials. J Mech Phys Solids 52:2187–2205ADSCrossRefMATH Qi HJ, Boyce MC (2004) Constitutive model for stretc-induced softening of the stress-stretch behavior of elastomeric materials. J Mech Phys Solids 52:2187–2205ADSCrossRefMATH
34.
go back to reference Dargazany R, Itskov M (2013) Constitutive modeling of Mullins effect and cyclic stress softening in filled elastomers. Phys Rev 88:012602ADS Dargazany R, Itskov M (2013) Constitutive modeling of Mullins effect and cyclic stress softening in filled elastomers. Phys Rev 88:012602ADS
37.
go back to reference Zúňiga AE, Rodríguez CA (2010) A non-monotonous damage function to characterize stress–softening effects with permanent set during inflation and deflation of rubber balloons. Int J Eng Sci 48:1937–1943CrossRef Zúňiga AE, Rodríguez CA (2010) A non-monotonous damage function to characterize stress–softening effects with permanent set during inflation and deflation of rubber balloons. Int J Eng Sci 48:1937–1943CrossRef
38.
go back to reference Calva V (2008) Characterization of the stress–softening and permanent set effects of elastomeric materials. M.S Thesis, Tecnologico de Monterrey, Campus Monterrey Calva V (2008) Characterization of the stress–softening and permanent set effects of elastomeric materials. M.S Thesis, Tecnologico de Monterrey, Campus Monterrey
39.
go back to reference Khan AS, Huang S (1995) Continuum theory of plasticisty. Wiley, Hoboken Khan AS, Huang S (1995) Continuum theory of plasticisty. Wiley, Hoboken
40.
go back to reference Georgousis G, Pandis C, Chatzimanolis-Moustakas C, Kyritsis A, Kontou E, Pissis P, Krajči J, Chodák I, Tabačiarová J, Mičušík M, Omastová M (2015) Study of the reinforcing mechanism and strain sensing in a carbon black filled elastomer. Compos B 80:20–26CrossRef Georgousis G, Pandis C, Chatzimanolis-Moustakas C, Kyritsis A, Kontou E, Pissis P, Krajči J, Chodák I, Tabačiarová J, Mičušík M, Omastová M (2015) Study of the reinforcing mechanism and strain sensing in a carbon black filled elastomer. Compos B 80:20–26CrossRef
Metadata
Title
Stress–softening effect of SBR/nanocomposites by a phenomenological Gent–Zener viscoelastic model
Author
Evagelia Kontou
Publication date
03-01-2018
Publisher
Springer Netherlands
Published in
Meccanica / Issue 9/2018
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-017-0812-0

Other articles of this Issue 9/2018

Meccanica 9/2018 Go to the issue

Premium Partners