Skip to main content
Top
Published in: Meccanica 9/2018

29-01-2018

ISPH modeling of natural convection heat transfer with an analytical kernel renormalization factor

Authors: Minh Tuan Nguyen, Abdelraheem M. Aly, Sang-Wook Lee

Published in: Meccanica | Issue 9/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The objective of this study is to extend the attention of the incompressible smoothed particle hydrodynamics method (ISPH) in the heat transfer field. The ISPH method for the natural convection heat transfer under the Boussinesq approximation in various environments: pure-fluid, nanofluid, and non-Darcy porous medium is introduced. We adopted the improved analytical method for calculating the kernel renormalization factor and its gradient based on a quintic kernel function for the wall boundary treatment in the ISPH method. The proposed method requires no dummy particle layer to meet the impermeability condition and makes the heat flux over the wall boundary easy to implement. We performed four different numerical simulations of natural convection in cavities with increasing complexity in modeling and implementation: the natural convection in a square cavity with constant differentially heated wall temperature, natural convection with the heat flux from the bottom wall for a wide range of Rayleigh numbers, natural convection in a non-Darcy porous cavity fully filled with nanofluid in different flow regimes, and natural convection in a partially layered porous cavity. The results showed excellent agreement with results from literatures and the in-house P1–P1 finite element method code.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024ADSCrossRef Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024ADSCrossRef
2.
go back to reference Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389ADSCrossRefMATH Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389ADSCrossRefMATH
3.
go back to reference Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl Sci Eng 123:421–434ADSCrossRef Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl Sci Eng 123:421–434ADSCrossRef
8.
go back to reference Fourey G, Oger G, Touzé DL, Alessandrini B (2010) Violent fluid–structure interaction simulations using a coupled SPH/FEM method. In: IOP conference series: materials science and engineering, vol 10, p 012041 Fourey G, Oger G, Touzé DL, Alessandrini B (2010) Violent fluid–structure interaction simulations using a coupled SPH/FEM method. In: IOP conference series: materials science and engineering, vol 10, p 012041
10.
go back to reference Shao S, Lo EYM (2003) Incompressible SPH method for simulating newtonian and non-newtonian flows with a free surface. Adv Water Resour 26:787–800ADSCrossRef Shao S, Lo EYM (2003) Incompressible SPH method for simulating newtonian and non-newtonian flows with a free surface. Adv Water Resour 26:787–800ADSCrossRef
11.
go back to reference Khayyer A, Gotoh H, Shao SD (2008) Corrected incompressible SPH method for accurate water-surface tracking in breaking waves. Coast Eng 55:236–250CrossRef Khayyer A, Gotoh H, Shao SD (2008) Corrected incompressible SPH method for accurate water-surface tracking in breaking waves. Coast Eng 55:236–250CrossRef
12.
go back to reference Asai M, Sonoda AMA, Sakai YY (2012) A Stabilized incompressible SPH method by relaxing the density invariance condition. J Appl Math Mech 2012:24MATH Asai M, Sonoda AMA, Sakai YY (2012) A Stabilized incompressible SPH method by relaxing the density invariance condition. J Appl Math Mech 2012:24MATH
13.
go back to reference Aly AM, Lee SW (2014) Numerical simulations of impact flows with incompressible smoothed particle hydrodynamics. J Mech Sci Technol 28:2179–2188CrossRef Aly AM, Lee SW (2014) Numerical simulations of impact flows with incompressible smoothed particle hydrodynamics. J Mech Sci Technol 28:2179–2188CrossRef
14.
go back to reference Gotoh H, Khayyer A (2016) A Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering. J Ocean Eng Mar Energy 2016:1–28 Gotoh H, Khayyer A (2016) A Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering. J Ocean Eng Mar Energy 2016:1–28
15.
go back to reference Shadloo MS, Oger G, Le Touzé D (2016) Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges. Comput Fluids 136:11–34MathSciNetCrossRef Shadloo MS, Oger G, Le Touzé D (2016) Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges. Comput Fluids 136:11–34MathSciNetCrossRef
16.
go back to reference Basak T, Roy S, Thirumalesha C (2007) Finite element analysis of natural convection in a triangular enclosure: effects of various thermal boundary conditions. Chem Eng Sci 62:2623–2640CrossRef Basak T, Roy S, Thirumalesha C (2007) Finite element analysis of natural convection in a triangular enclosure: effects of various thermal boundary conditions. Chem Eng Sci 62:2623–2640CrossRef
17.
go back to reference Oztop HF, Varol Y, Pop I (2009) Investigation of natural convection in triangular enclosure filled with porous media saturated with water near 4°C. Energ Convers Manag 50:1473–1480CrossRef Oztop HF, Varol Y, Pop I (2009) Investigation of natural convection in triangular enclosure filled with porous media saturated with water near 4°C. Energ Convers Manag 50:1473–1480CrossRef
18.
go back to reference Sieres J, Campo A, Ridouane EH, Fernándes-Seara J (2007) Effect of surface radiation on buoyant convection in vertical triangular cavities with variable aperture angles. Int J Heat Mass Transf 50:5139–5149CrossRefMATH Sieres J, Campo A, Ridouane EH, Fernándes-Seara J (2007) Effect of surface radiation on buoyant convection in vertical triangular cavities with variable aperture angles. Int J Heat Mass Transf 50:5139–5149CrossRefMATH
19.
go back to reference Varol Y, Oztop HF, Pop I (2009) Entropy generation due to natural convection in non-uniformly heated porous isosceles triangular enclosures at different positions. Int J Heat Mass Transf 52:1193–1205CrossRefMATH Varol Y, Oztop HF, Pop I (2009) Entropy generation due to natural convection in non-uniformly heated porous isosceles triangular enclosures at different positions. Int J Heat Mass Transf 52:1193–1205CrossRefMATH
20.
go back to reference Varol Y, Oztop HF, Pop I (2009) Natural convection in right-angle porous trapezoidal enclosure partially cooled from inclined wall. Int Commun Heat Mass 36:6–15CrossRef Varol Y, Oztop HF, Pop I (2009) Natural convection in right-angle porous trapezoidal enclosure partially cooled from inclined wall. Int Commun Heat Mass 36:6–15CrossRef
21.
go back to reference Chamkha AJ, Ismael MA (2014) Natural convection in differentially heated partially porous layered cavities filled with a nanofluid. Numer Heat Transf Appl 65:1089–1113ADSCrossRef Chamkha AJ, Ismael MA (2014) Natural convection in differentially heated partially porous layered cavities filled with a nanofluid. Numer Heat Transf Appl 65:1089–1113ADSCrossRef
22.
go back to reference Chamkha AJ, Mansour MA, Ahmed SE (2010) Double-diffusive natural convection in inclined finned triangular porous enclosures in the presence of heat generation/absorption effects. Heat Mass Transf 46:757–768ADSCrossRef Chamkha AJ, Mansour MA, Ahmed SE (2010) Double-diffusive natural convection in inclined finned triangular porous enclosures in the presence of heat generation/absorption effects. Heat Mass Transf 46:757–768ADSCrossRef
23.
go back to reference Aly AM (2017) Natural convection over circular cylinders in a porous enclosure filled with a nanofluid under thermo-diffusion effects. J Taiwan Inst Chem Eng 70:88–103CrossRef Aly AM (2017) Natural convection over circular cylinders in a porous enclosure filled with a nanofluid under thermo-diffusion effects. J Taiwan Inst Chem Eng 70:88–103CrossRef
24.
go back to reference Nguyen MT, Aly AM, Lee SW (2015) Natural convection in a non-Darcy porous cavity filled with cu–water nanofluid using the characteristic-based split procedure in finite-element method. Numer Heat Transf Appl 67:224–247ADSCrossRef Nguyen MT, Aly AM, Lee SW (2015) Natural convection in a non-Darcy porous cavity filled with cu–water nanofluid using the characteristic-based split procedure in finite-element method. Numer Heat Transf Appl 67:224–247ADSCrossRef
25.
go back to reference Nithiarasu P, Sundararajan T, Seetharamu KN (1998) Finite element analysis of transient natural convection in an odd-shaped enclosure. Int J Numer Methods H 8:199–216CrossRefMATH Nithiarasu P, Sundararajan T, Seetharamu KN (1998) Finite element analysis of transient natural convection in an odd-shaped enclosure. Int J Numer Methods H 8:199–216CrossRefMATH
26.
go back to reference Aly AM (2015) Modeling of multi-phase flows and natural convection in a square cavity using an incompressible smoothed particle hydrodynamics. Int J Numer Method Heat 25:513–533MathSciNetCrossRefMATH Aly AM (2015) Modeling of multi-phase flows and natural convection in a square cavity using an incompressible smoothed particle hydrodynamics. Int J Numer Method Heat 25:513–533MathSciNetCrossRefMATH
27.
go back to reference Aly AM, Asai M (2015) Modelling of non-Darcy flows through porous media using extended incompressible smoothed particle hydrodynamics. Numer Heat Transf B Fundam 67:255–279ADSCrossRef Aly AM, Asai M (2015) Modelling of non-Darcy flows through porous media using extended incompressible smoothed particle hydrodynamics. Numer Heat Transf B Fundam 67:255–279ADSCrossRef
28.
go back to reference Aly AM, Chamkha AJ, Lee SW, Al-Mudhaf A (2016) On mixed convection in an inclined lid-driven cavity with sinusoidal heated walls using the ISPH method. Int J Comput Therm 8:337–354 Aly AM, Chamkha AJ, Lee SW, Al-Mudhaf A (2016) On mixed convection in an inclined lid-driven cavity with sinusoidal heated walls using the ISPH method. Int J Comput Therm 8:337–354
29.
go back to reference Leroy A, Violeau D, Ferrand M, Joly A (2015) Buoyancy modelling with incompressible SPH for laminar and turbulent flows. Int J Numer Methods Fluid 78:455–474MathSciNetCrossRef Leroy A, Violeau D, Ferrand M, Joly A (2015) Buoyancy modelling with incompressible SPH for laminar and turbulent flows. Int J Numer Methods Fluid 78:455–474MathSciNetCrossRef
31.
go back to reference Chaniotis AK, Poulikakos D, Koumoutsakos P (2002) Remeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flows. J Comput Phys 182:67–90ADSCrossRefMATH Chaniotis AK, Poulikakos D, Koumoutsakos P (2002) Remeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flows. J Comput Phys 182:67–90ADSCrossRefMATH
32.
33.
go back to reference Szewc K, Pozorski J, Taniére A (2011) Modeling of natural convection with smoothed particle hydrodynamics: non-Boussinesq formulation. Int J Heat Mass Transf 54:4807–4816CrossRefMATH Szewc K, Pozorski J, Taniére A (2011) Modeling of natural convection with smoothed particle hydrodynamics: non-Boussinesq formulation. Int J Heat Mass Transf 54:4807–4816CrossRefMATH
34.
go back to reference Morris JP, Fox PJ, Zhu Y (1997) Modeling low Reynolds number incompressible flows using SPH. J Comput Phys 136:214–226ADSCrossRefMATH Morris JP, Fox PJ, Zhu Y (1997) Modeling low Reynolds number incompressible flows using SPH. J Comput Phys 136:214–226ADSCrossRefMATH
35.
36.
go back to reference Leroy A, Violeau D, Ferrand M, Kassiotis C (2014) Unified semi-analytical wall boundary conditions applied to 2-D incompressible SPH. J Comput Phys 261:106–129ADSMathSciNetCrossRefMATH Leroy A, Violeau D, Ferrand M, Kassiotis C (2014) Unified semi-analytical wall boundary conditions applied to 2-D incompressible SPH. J Comput Phys 261:106–129ADSMathSciNetCrossRefMATH
37.
go back to reference De Leffe M, Le Touze D, Alessandrini B (2009) Normal flux method at the boundary for SPH. 4th Int SPHERIC Workshop (SPHERIC 2009), Nantes, France De Leffe M, Le Touze D, Alessandrini B (2009) Normal flux method at the boundary for SPH. 4th Int SPHERIC Workshop (SPHERIC 2009), Nantes, France
38.
go back to reference Feldman J, Bonet J (2007) Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems. Int J Numer Methods Eng 72:295–324MathSciNetCrossRefMATH Feldman J, Bonet J (2007) Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems. Int J Numer Methods Eng 72:295–324MathSciNetCrossRefMATH
39.
go back to reference Monaco AD, Manenti S, Gallati M, Sibilla S, Agate G, Guandalini R (2011) SPH modeling of solid boundaries through a semi-analytic approach. Eng Appl Comput Fluid 5:1–15 Monaco AD, Manenti S, Gallati M, Sibilla S, Agate G, Guandalini R (2011) SPH modeling of solid boundaries through a semi-analytic approach. Eng Appl Comput Fluid 5:1–15
40.
go back to reference Ferrandd M, Laurence DR, Rogers BD, Violearu D, Kassiotis C (2013) Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method. Int J Numer Methods Fluids 71:446–472MathSciNetCrossRef Ferrandd M, Laurence DR, Rogers BD, Violearu D, Kassiotis C (2013) Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method. Int J Numer Methods Fluids 71:446–472MathSciNetCrossRef
41.
go back to reference Mayrhofer A, Rogers BD, Violeau D, Ferrand M (2013) Investigation of wall bounded flows using SPH and the unified semi-analytical wall boundary conditions. Comput Phys Commun 184:2515–2527ADSMathSciNetCrossRefMATH Mayrhofer A, Rogers BD, Violeau D, Ferrand M (2013) Investigation of wall bounded flows using SPH and the unified semi-analytical wall boundary conditions. Comput Phys Commun 184:2515–2527ADSMathSciNetCrossRefMATH
42.
go back to reference Macià F, González LM, Cercos-pita JL, Souto-iglesias A (2012) A boundary integral SPH formulation: consistency and applications to ISPH and WCSPH. Prog Theor Phys 128:439–462ADSCrossRefMATH Macià F, González LM, Cercos-pita JL, Souto-iglesias A (2012) A boundary integral SPH formulation: consistency and applications to ISPH and WCSPH. Prog Theor Phys 128:439–462ADSCrossRefMATH
45.
go back to reference Lind SJ, Xu R, Stansby PK, Rogers BD (2012) Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. J Comput Phys 231:1499–1523ADSMathSciNetCrossRefMATH Lind SJ, Xu R, Stansby PK, Rogers BD (2012) Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. J Comput Phys 231:1499–1523ADSMathSciNetCrossRefMATH
46.
go back to reference Skillen A, Lind S, Stansby PK, Rogers BD (2013) Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised Fickian smoothing applied to body–water slam and efficient wave–body interaction. Comput Method Appl M 265:163–173MathSciNetCrossRefMATH Skillen A, Lind S, Stansby PK, Rogers BD (2013) Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised Fickian smoothing applied to body–water slam and efficient wave–body interaction. Comput Method Appl M 265:163–173MathSciNetCrossRefMATH
47.
go back to reference Brookshaw L (1985) A method of calculating radiative heat diffusion in particle simulations. Proc Astron Soc Aust 6:207–210ADSCrossRef Brookshaw L (1985) A method of calculating radiative heat diffusion in particle simulations. Proc Astron Soc Aust 6:207–210ADSCrossRef
48.
go back to reference Kulasegaram S, Bonet J, Lewis WR, Profit M (2004) A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications. Comput Mech 33:316–325CrossRefMATH Kulasegaram S, Bonet J, Lewis WR, Profit M (2004) A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications. Comput Mech 33:316–325CrossRefMATH
49.
go back to reference Davis GDV (1983) Natural convection of air in a square cavity: a bench mark numerical solution. Int J Numer Methods Fluids 3:249–264CrossRefMATH Davis GDV (1983) Natural convection of air in a square cavity: a bench mark numerical solution. Int J Numer Methods Fluids 3:249–264CrossRefMATH
50.
go back to reference Nguyen MT, Aly AM, Lee SW (2016) Unsteady natural convection heat transfer in a nanofluid-filled square cavity with various heat source conditions. Adv Mech Eng 8(5):1–18CrossRef Nguyen MT, Aly AM, Lee SW (2016) Unsteady natural convection heat transfer in a nanofluid-filled square cavity with various heat source conditions. Adv Mech Eng 8(5):1–18CrossRef
51.
go back to reference Nithiarasu P, Seetharamu KN, Sundararajan T (1997) Natural convective heat transfer in a fluid saturated variable porosity medium. Int J Heat Mass Transf 40:3955–3967CrossRefMATH Nithiarasu P, Seetharamu KN, Sundararajan T (1997) Natural convective heat transfer in a fluid saturated variable porosity medium. Int J Heat Mass Transf 40:3955–3967CrossRefMATH
52.
go back to reference Maxwell J (1904) A treatise on electricity and magnetism, 2nd edn. Oxford University Press, OxfordMATH Maxwell J (1904) A treatise on electricity and magnetism, 2nd edn. Oxford University Press, OxfordMATH
53.
go back to reference Brinkman HC (1952) The Viscosity of concentrated suspensions and solutions. J Chem Phys 20:571ADSCrossRef Brinkman HC (1952) The Viscosity of concentrated suspensions and solutions. J Chem Phys 20:571ADSCrossRef
54.
go back to reference Beckermann C, Ramadhyani S, Viskanta R (1987) Natural convection flow and heat transfer between a fluid layer and a porous layer inside a rectangular enclosure. J Heat Transf 109:363–370CrossRef Beckermann C, Ramadhyani S, Viskanta R (1987) Natural convection flow and heat transfer between a fluid layer and a porous layer inside a rectangular enclosure. J Heat Transf 109:363–370CrossRef
Metadata
Title
ISPH modeling of natural convection heat transfer with an analytical kernel renormalization factor
Authors
Minh Tuan Nguyen
Abdelraheem M. Aly
Sang-Wook Lee
Publication date
29-01-2018
Publisher
Springer Netherlands
Published in
Meccanica / Issue 9/2018
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-018-0825-3

Other articles of this Issue 9/2018

Meccanica 9/2018 Go to the issue

Premium Partners