Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 12/2019

18-05-2019

Strong magnetic properties and enhanced coupling effect by tailoring the molar ratio in BaTiO3/Co0.5Mg0.3Zn0.2Fe2O4 composite ceramics

Authors: Lang Bai, Rongli Gao, Qingmei Zhang, Zhiyi Xu, Zhenhua Wang, Chunlin Fu, Gang Chen, Xiaoling Deng, Xiaodong Luo, Wei Cai

Published in: Journal of Materials Science: Materials in Electronics | Issue 12/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

BTO/CMZFO composite ceramics with different molar ratios (the molar of BTO to that of CMZFO) (3:1, 2:1, 1:1, 1:2, 1:3) were prepared by conventional solid state reaction method. Effects of molar ratio on the dielectric, magnetic properties and coupling effect were investigated. The results indicate that the ceramics show bi-phase composite structure, without any obvious impurities can be found. The grain size can be categorized into two types, one is BTO with the grain size of 2–3 μm while the other one is CMZFO with the size less than 0.5 μm. The dielectric constant of all the composites is less than 500 in the frequency range from 20 to 2 MHz, and it decreases with decreasing the molar ratio while the dielectric loss shows the opposite behavior. The frequency stability of dielectric constant decreases with the addition of CMZFO due to the increased relaxation polarization. The dielectric constant and loss present non-monotonic dependence on the molar ratio, one or more relaxation peaks can be found. With the reduction of molar ratio, the height of the relaxation peak decreases and the position of the relaxation peak shifts to lower temperature. The remnant polarization (Pr) range is from 2 to 7.5 μC/cm2, it decreases first and then increases with the molar ratio, this non-monotonic transition can be attributed to the combined action of ferroelectric phase and leakage current. The magnetization decreases and then increases with the diminution of molar ratio, the largest remnant magnetization (Mr) of the composites is 31.52 emu/g when the ratio is 1:3. The largest effective magnetization of CMZFO component in the composite is 84.855 emu/g for the specimen with the molar ratio 2:1, which is due to the strongest interface interaction between the two phases compared with other samples. The coupling coefficient increases rapidly and then decreases slowly with the applied magnetic field, and the maximum coupling coefficient is near 1.2 mV/cmOe, which is obtained at about 2 kOe in the sample with the molar ratio 1:3.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1716–1719 (2003)CrossRef J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1716–1719 (2003)CrossRef
3.
go back to reference H.T. Yi, T. Choi, S.G. Choi, Y.S. Oh, S.-W. Cheong, Adv. Mater. 23, 3403–3407 (2011)CrossRef H.T. Yi, T. Choi, S.G. Choi, Y.S. Oh, S.-W. Cheong, Adv. Mater. 23, 3403–3407 (2011)CrossRef
4.
go back to reference R.L. Gao, C.L. Fu, W. Cai, G. Chen, X.L. Deng, H.R. Zhang, J.R. Sun, B.G. Shen, Sci. Rep. 6, 20330 (2016)CrossRef R.L. Gao, C.L. Fu, W. Cai, G. Chen, X.L. Deng, H.R. Zhang, J.R. Sun, B.G. Shen, Sci. Rep. 6, 20330 (2016)CrossRef
5.
go back to reference T. Choi, S. Lee, Y. Choi, V. Kiryukhin, S. Cheong, Science 324, 63–66 (2009)CrossRef T. Choi, S. Lee, Y. Choi, V. Kiryukhin, S. Cheong, Science 324, 63–66 (2009)CrossRef
6.
go back to reference R.L. Gao, C.L. Fu, W. Cai, G. Chen, X.L. Deng, X.L. Cao, Mater. Res. Bull. 84, 93–98 (2016)CrossRef R.L. Gao, C.L. Fu, W. Cai, G. Chen, X.L. Deng, X.L. Cao, Mater. Res. Bull. 84, 93–98 (2016)CrossRef
7.
go back to reference C. Renner, G. Aeppli, B.G. Kim, Y.A. Soh, S.W. Cheong, Nature 416, 518–521 (2002)CrossRef C. Renner, G. Aeppli, B.G. Kim, Y.A. Soh, S.W. Cheong, Nature 416, 518–521 (2002)CrossRef
8.
go back to reference T. Atou, H. Chiba, K. Ohoyam, Y. Yamaguchi, Y. Syono, J. Solid State Chem. 145, 639–642 (1999)CrossRef T. Atou, H. Chiba, K. Ohoyam, Y. Yamaguchi, Y. Syono, J. Solid State Chem. 145, 639–642 (1999)CrossRef
9.
go back to reference Y.Z. Sun, F. Guo, J.Y. Chen, S.F. Zhao, Appl. Phys. Lett. 111, 253901 (2017)CrossRef Y.Z. Sun, F. Guo, J.Y. Chen, S.F. Zhao, Appl. Phys. Lett. 111, 253901 (2017)CrossRef
10.
11.
go back to reference R. Nechache, C. Harnagea, S. Licoccia, E. Traversa, A. Ruediger, A. Pignolet, F. Rosei, Appl. Phys. Lett. 98, 202902 (2011)CrossRef R. Nechache, C. Harnagea, S. Licoccia, E. Traversa, A. Ruediger, A. Pignolet, F. Rosei, Appl. Phys. Lett. 98, 202902 (2011)CrossRef
13.
14.
go back to reference T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M.P. Cruz, Y.H. Chu, C. Ederer, N.A. Spaldin, R.R. Das, D.M. Kim, S.H. Baek, C.B. Eom, R. Ramesh, Nat. Mater. 5, 823–829 (2006)CrossRef T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M.P. Cruz, Y.H. Chu, C. Ederer, N.A. Spaldin, R.R. Das, D.M. Kim, S.H. Baek, C.B. Eom, R. Ramesh, Nat. Mater. 5, 823–829 (2006)CrossRef
15.
go back to reference H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L.M. Ardabili, T. Zhao, L.S. Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Science 303, 30–32 (2004)CrossRef H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L.M. Ardabili, T. Zhao, L.S. Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Science 303, 30–32 (2004)CrossRef
16.
go back to reference R.L. Gao, H.W. Yang, J.R. Sun, Y.G. Zhao, B.G. Shen, Appl. Phys. Lett. 104, 031906 (2014)CrossRef R.L. Gao, H.W. Yang, J.R. Sun, Y.G. Zhao, B.G. Shen, Appl. Phys. Lett. 104, 031906 (2014)CrossRef
17.
go back to reference G.S. Lotey, N.K. Verma, J. Mater. Sci.: Mater. Electron. 24, 3723–3729 (2013) G.S. Lotey, N.K. Verma, J. Mater. Sci.: Mater. Electron. 24, 3723–3729 (2013)
18.
19.
go back to reference R.L. Gao, C.L. Fu, W. Cai, G. Chen, X.L. Deng, X.L. Cao, Mater. Chem. Phys. 181, 277–283 (2016)CrossRef R.L. Gao, C.L. Fu, W. Cai, G. Chen, X.L. Deng, X.L. Cao, Mater. Chem. Phys. 181, 277–283 (2016)CrossRef
20.
go back to reference G. Dhir, G.S. Lotey, P. Uniyal, N.K. Verma, J. Mater. Sci.: Mater. Electron. 24, 4386–4392 (2013) G. Dhir, G.S. Lotey, P. Uniyal, N.K. Verma, J. Mater. Sci.: Mater. Electron. 24, 4386–4392 (2013)
21.
go back to reference G.S. Lotey, N.K. Verma, Chemi. Phys. Lett. 579, 78–84 (2013) G.S. Lotey, N.K. Verma, Chemi. Phys. Lett. 579, 78–84 (2013)
22.
go back to reference R.L. Gao, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, W. Cai, G. Chen, X.L. Deng, X.L. Cao, X.D. Luo, C.L. Fu, Nanoscale 10, 11750–11759 (2018)CrossRef R.L. Gao, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, W. Cai, G. Chen, X.L. Deng, X.L. Cao, X.D. Luo, C.L. Fu, Nanoscale 10, 11750–11759 (2018)CrossRef
23.
24.
go back to reference R.C. Xu, S.L. Zhang, F.Q. Wang, Q.W. Zhang, Z.D. Li, Z.H. Wang, R.L. Gao, C.L. Fu, J. Electron. Mater. 48, 386–400 (2019)CrossRef R.C. Xu, S.L. Zhang, F.Q. Wang, Q.W. Zhang, Z.D. Li, Z.H. Wang, R.L. Gao, C.L. Fu, J. Electron. Mater. 48, 386–400 (2019)CrossRef
25.
go back to reference Z.H. Tang, B. Yang, J.Y. Chen, Q.S. Lu, S.F. Zhao, J. Alloys Compd. 772, 298–305 (2019)CrossRef Z.H. Tang, B. Yang, J.Y. Chen, Q.S. Lu, S.F. Zhao, J. Alloys Compd. 772, 298–305 (2019)CrossRef
26.
go back to reference R.C. Xu, Z.H. Wang, R.L. Gao, S.L. Zhang, Q.W. Zhang, Z.D. Li, C.Y. Li, G. Chen, X.L. Deng, W. Cai, C.L. Fu, J. Mater. Sci.: Mater. Electron. 29, 16226–16237 (2018) R.C. Xu, Z.H. Wang, R.L. Gao, S.L. Zhang, Q.W. Zhang, Z.D. Li, C.Y. Li, G. Chen, X.L. Deng, W. Cai, C.L. Fu, J. Mater. Sci.: Mater. Electron. 29, 16226–16237 (2018)
27.
go back to reference S.S. Vadla, T. Costanzo, S. John, G. Caruntu, S.C. Roy, Scr. Mater. 159, 33–36 (2019)CrossRef S.S. Vadla, T. Costanzo, S. John, G. Caruntu, S.C. Roy, Scr. Mater. 159, 33–36 (2019)CrossRef
28.
go back to reference P. Zhou, K. Liang, Y. Liu, Z.Q. Zheng, T.J. Zhang, Appl. Phys. A 124, 670–675 (2018)CrossRef P. Zhou, K. Liang, Y. Liu, Z.Q. Zheng, T.J. Zhang, Appl. Phys. A 124, 670–675 (2018)CrossRef
29.
go back to reference H. Xu, M. Feng, M. Liu, X.D. Sun, L. Wang, L.Y. Jiang, X. Zhao, C.W. Nan, A.P. Wang, H.B. Li, Cryst. Growth Des. 18, 5934–5939 (2018)CrossRef H. Xu, M. Feng, M. Liu, X.D. Sun, L. Wang, L.Y. Jiang, X. Zhao, C.W. Nan, A.P. Wang, H.B. Li, Cryst. Growth Des. 18, 5934–5939 (2018)CrossRef
30.
go back to reference S.S. Hossain, P.K. Roy, J. Mater. Sci.: Mater. Electron. 28, 18136–18144 (2018) S.S. Hossain, P.K. Roy, J. Mater. Sci.: Mater. Electron. 28, 18136–18144 (2018)
31.
go back to reference A. Anju, S. Satapathy, M.M. Shirolkar, J. Li, A.A. Khan, P. Deshmukh, H.Q. Wang, R.J. Choudhary, A.K. Karnal, ACS Appl. Nano Mater. 1, 3196–3203 (2018)CrossRef A. Anju, S. Satapathy, M.M. Shirolkar, J. Li, A.A. Khan, P. Deshmukh, H.Q. Wang, R.J. Choudhary, A.K. Karnal, ACS Appl. Nano Mater. 1, 3196–3203 (2018)CrossRef
34.
go back to reference A. Ghani, S. Yang, S.S. Rajput, S. Ahmed, A. Murtaza, C. Zhou, Y. Zhang, X.P. Song, X.B. Ren, J. Appl. Phys. 124, 154101 (2018)CrossRef A. Ghani, S. Yang, S.S. Rajput, S. Ahmed, A. Murtaza, C. Zhou, Y. Zhang, X.P. Song, X.B. Ren, J. Appl. Phys. 124, 154101 (2018)CrossRef
36.
go back to reference Z.X. Yue, J. Zhou, X.H. Wang, Z.L. Gui, J. Mater. Sci. Lett. 20, 1327–1329 (2001)CrossRef Z.X. Yue, J. Zhou, X.H. Wang, Z.L. Gui, J. Mater. Sci. Lett. 20, 1327–1329 (2001)CrossRef
37.
go back to reference Z.X. Yue, J. Zhou, L.T. Li, X.H. Wang, Mater. Sci. Eng., B 86, 64–69 (2001)CrossRef Z.X. Yue, J. Zhou, L.T. Li, X.H. Wang, Mater. Sci. Eng., B 86, 64–69 (2001)CrossRef
38.
39.
go back to reference R.L. Gao, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, G. Chen, X.L. Deng, C.L. Fu, W. Cai, Compos. Part. B 166, 204–212 (2019)CrossRef R.L. Gao, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, G. Chen, X.L. Deng, C.L. Fu, W. Cai, Compos. Part. B 166, 204–212 (2019)CrossRef
40.
go back to reference R. Debnath, S.K. Mandal, A. Nath, P. Dey, Int. J. Mod. Phys. B 32, 1840060 (2018)CrossRef R. Debnath, S.K. Mandal, A. Nath, P. Dey, Int. J. Mod. Phys. B 32, 1840060 (2018)CrossRef
41.
go back to reference R.L. Gao, Z.H. Wang, G. Chen, X.L. Deng, W. Cai, C.L. Fu, Ceram. Int. 44, S84–S87 (2018)CrossRef R.L. Gao, Z.H. Wang, G. Chen, X.L. Deng, W. Cai, C.L. Fu, Ceram. Int. 44, S84–S87 (2018)CrossRef
42.
go back to reference Z. Dong, Y. Pu, Z. Gao, P. Wang, X. Liu, Z. Sun, J. Eur. Ceram. Soc. 35, 3513–3520 (2015)CrossRef Z. Dong, Y. Pu, Z. Gao, P. Wang, X. Liu, Z. Sun, J. Eur. Ceram. Soc. 35, 3513–3520 (2015)CrossRef
44.
go back to reference S. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V. Turchenko, D. Chushkova, E.L. Trukhanova, O. Viktor, E.S. Yakovenko, L. Matzui, J. Magn. Magn. Mater. 442, 300–310 (2017)CrossRef S. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V. Turchenko, D. Chushkova, E.L. Trukhanova, O. Viktor, E.S. Yakovenko, L. Matzui, J. Magn. Magn. Mater. 442, 300–310 (2017)CrossRef
45.
go back to reference Q. Li, J. Li, X.M. Chen, S.N. Han, R.L. Gao, J. Exp. Nanosci. 3, 245–257 (2008)CrossRef Q. Li, J. Li, X.M. Chen, S.N. Han, R.L. Gao, J. Exp. Nanosci. 3, 245–257 (2008)CrossRef
Metadata
Title
Strong magnetic properties and enhanced coupling effect by tailoring the molar ratio in BaTiO3/Co0.5Mg0.3Zn0.2Fe2O4 composite ceramics
Authors
Lang Bai
Rongli Gao
Qingmei Zhang
Zhiyi Xu
Zhenhua Wang
Chunlin Fu
Gang Chen
Xiaoling Deng
Xiaodong Luo
Wei Cai
Publication date
18-05-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 12/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01513-8

Other articles of this Issue 12/2019

Journal of Materials Science: Materials in Electronics 12/2019 Go to the issue