Skip to main content
Top
Published in: Journal of Scientific Computing 2/2018

18-01-2018

Strong Stability Preserving General Linear Methods with Runge–Kutta Stability

Authors: Giovanna Califano, Giuseppe Izzo, Zdzisław Jackiewicz

Published in: Journal of Scientific Computing | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We investigate strong stability preserving (SSP) general linear methods (GLMs) for systems of ordinary differential equations. Such methods are obtained by the solution of the minimization problems with nonlinear inequality constrains, corresponding to the SSP property of these methods, and equality constrains, corresponding to order and stage order conditions. These minimization problems were solved by the sequential quadratic programming algorithm implemented in MATLAB\(^{\circledR }\) subroutine fmincon.m starting with many random guesses. Examples of transformed SSP GLMs of order \(p = 1, 2, 3\), and 4, and stage order \(q = p\) have been determined, and suitable starting and finishing procedures have been constructed. The numerical experiments performed on a set of test problems have shown that transformed SSP GLMs constructed in this paper are more accurate than transformed SSP DIMSIMs and SSP Runge–Kutta methods of the same order.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Butcher, J.C., Jackiewicz, Z.: Construction of general linear methods with Runge–Kutta stability properties. Numer. Algorithms 36, 53–72 (2004)MathSciNetCrossRefMATH Butcher, J.C., Jackiewicz, Z.: Construction of general linear methods with Runge–Kutta stability properties. Numer. Algorithms 36, 53–72 (2004)MathSciNetCrossRefMATH
4.
5.
go back to reference Constantinescu, E.M., Sandu, A.: Optimal explicit strong-stability-preserving general linear methods. SIAM J. Sci. Comput. 32, 3130–3150 (2010)MathSciNetCrossRefMATH Constantinescu, E.M., Sandu, A.: Optimal explicit strong-stability-preserving general linear methods. SIAM J. Sci. Comput. 32, 3130–3150 (2010)MathSciNetCrossRefMATH
6.
go back to reference Ferracina, L., Spijker, M.N.: An extension and analysis of the Shu–Osher representation of Runge–Kutta methods. Math. Comput. 74, 201–219 (2004)MathSciNetCrossRefMATH Ferracina, L., Spijker, M.N.: An extension and analysis of the Shu–Osher representation of Runge–Kutta methods. Math. Comput. 74, 201–219 (2004)MathSciNetCrossRefMATH
7.
go back to reference Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-diminishing property in general Runge–Kutta methods. SIAM J. Numer. Anal. 42, 1073–1093 (2004)MathSciNetCrossRefMATH Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-diminishing property in general Runge–Kutta methods. SIAM J. Numer. Anal. 42, 1073–1093 (2004)MathSciNetCrossRefMATH
8.
go back to reference Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-boundedness in general Runge–Kutta procedures. Appl. Numer. Math. 53, 265–279 (2005)MathSciNetCrossRefMATH Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-boundedness in general Runge–Kutta procedures. Appl. Numer. Math. 53, 265–279 (2005)MathSciNetCrossRefMATH
9.
go back to reference Ferracina, L., Spijker, M.N.: Strong stability of singly-diagonally-implicit Runge–Kutta methods. Appl. Numer. Math. 58, 1675–1686 (2008)MathSciNetCrossRefMATH Ferracina, L., Spijker, M.N.: Strong stability of singly-diagonally-implicit Runge–Kutta methods. Appl. Numer. Math. 58, 1675–1686 (2008)MathSciNetCrossRefMATH
10.
go back to reference Gottlieb, S.: On high order strong stability preserving Runge–Kutta methods and multistep time discretizations. J. Sci. Comput. 25, 105–127 (2005)MathSciNetMATH Gottlieb, S.: On high order strong stability preserving Runge–Kutta methods and multistep time discretizations. J. Sci. Comput. 25, 105–127 (2005)MathSciNetMATH
11.
go back to reference Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: High order strong stability preserving time discretizations. J. Sci. Comput. 38, 251–289 (2009)MathSciNetCrossRefMATH Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: High order strong stability preserving time discretizations. J. Sci. Comput. 38, 251–289 (2009)MathSciNetCrossRefMATH
12.
go back to reference Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific Publishing Co. Pte. Ltd., Hackensack (2011)CrossRefMATH Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific Publishing Co. Pte. Ltd., Hackensack (2011)CrossRefMATH
13.
go back to reference Gottlieb, S., Ruuth, S.J.: Optimal strong-stability-preserving time stepping schemes with fast downwind spatial discretizations. J. Sci. Comput. 27, 289–303 (2006)MathSciNetCrossRefMATH Gottlieb, S., Ruuth, S.J.: Optimal strong-stability-preserving time stepping schemes with fast downwind spatial discretizations. J. Sci. Comput. 27, 289–303 (2006)MathSciNetCrossRefMATH
14.
go back to reference Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)MathSciNetCrossRefMATH Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)MathSciNetCrossRefMATH
17.
go back to reference Higueras, I.: Representations of Runge–Kutta methods and strong stability preserving methods. SIAM J. Numer. Anal. 43, 924–948 (2005)MathSciNetCrossRefMATH Higueras, I.: Representations of Runge–Kutta methods and strong stability preserving methods. SIAM J. Numer. Anal. 43, 924–948 (2005)MathSciNetCrossRefMATH
18.
go back to reference Hundsdorfer, W., Ruuth, S.J.: On monotonicity and boundedness properties of linear multistep methods. Math. Comput. 75, 655–672 (2005)MathSciNetCrossRefMATH Hundsdorfer, W., Ruuth, S.J.: On monotonicity and boundedness properties of linear multistep methods. Math. Comput. 75, 655–672 (2005)MathSciNetCrossRefMATH
19.
go back to reference Hundsdorfer, W., Ruuth, S.J., Spiteri, R.J.: Monotonicity-preserving linear multistep methods. SIAM J. Numer. Anal. 41, 605–623 (2003)MathSciNetCrossRefMATH Hundsdorfer, W., Ruuth, S.J., Spiteri, R.J.: Monotonicity-preserving linear multistep methods. SIAM J. Numer. Anal. 41, 605–623 (2003)MathSciNetCrossRefMATH
20.
go back to reference Hundsdorfer, W., Verwer, J.G.: Numerical Solution of Time-Dependent Advection–Diffusion–Reaction Equations. Springer, Berlin (2003)CrossRefMATH Hundsdorfer, W., Verwer, J.G.: Numerical Solution of Time-Dependent Advection–Diffusion–Reaction Equations. Springer, Berlin (2003)CrossRefMATH
22.
23.
go back to reference Izzo, G., Jackiewicz, Z.: Strong stability preserving transformed DIMSIMs. J. Comput. Appl. Math. (submitted) Izzo, G., Jackiewicz, Z.: Strong stability preserving transformed DIMSIMs. J. Comput. Appl. Math. (submitted)
25.
go back to reference Jackiewicz, Z.: General Linear Methods for Ordinary Differential Equations. Wiley, Hoboken (2009)CrossRefMATH Jackiewicz, Z.: General Linear Methods for Ordinary Differential Equations. Wiley, Hoboken (2009)CrossRefMATH
26.
go back to reference Jackiewicz, Z., Tracogna, S.: A general class of two-step Runge–Kutta methods for ordinary differential equations. SIAM J. Numer. Anal. 32, 1390–1427 (1995)MathSciNetCrossRefMATH Jackiewicz, Z., Tracogna, S.: A general class of two-step Runge–Kutta methods for ordinary differential equations. SIAM J. Numer. Anal. 32, 1390–1427 (1995)MathSciNetCrossRefMATH
27.
go back to reference Ketcheson, D.I., Gottlieb, S., Macdonald, C.B.: Strong stability preserving two-step Runge–Kutta methods. SIAM J. Numer. Anal. 49, 2618–2639 (2011)MathSciNetCrossRefMATH Ketcheson, D.I., Gottlieb, S., Macdonald, C.B.: Strong stability preserving two-step Runge–Kutta methods. SIAM J. Numer. Anal. 49, 2618–2639 (2011)MathSciNetCrossRefMATH
28.
go back to reference Ketcheson, D.I., Macdonald, C.B., Gottlieb, S.: Optimal implicit strong stability preserving Runge–Kutta methods. Appl. Numer. Math. 59, 373–392 (2009)MathSciNetCrossRefMATH Ketcheson, D.I., Macdonald, C.B., Gottlieb, S.: Optimal implicit strong stability preserving Runge–Kutta methods. Appl. Numer. Math. 59, 373–392 (2009)MathSciNetCrossRefMATH
30.
go back to reference Lancaster, P., Tismenetsky, M.: The Theory of Matrices. Academic, New York (1985)MATH Lancaster, P., Tismenetsky, M.: The Theory of Matrices. Academic, New York (1985)MATH
31.
32.
go back to reference LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)CrossRefMATH LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)CrossRefMATH
33.
go back to reference Ruuth, S.J., Hundsdorfer, W.: High-order linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 209, 226–248 (2005)MathSciNetCrossRefMATH Ruuth, S.J., Hundsdorfer, W.: High-order linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 209, 226–248 (2005)MathSciNetCrossRefMATH
34.
go back to reference Sanz-Serna, J.M., Verwer, J.G., Hundsdorfer, W.H.: Convergence and order reduction of Runge–Kutta schemes applied to evolutionary problems in partial differential equations. Numer. Math. 50, 405–418 (1986)MathSciNetCrossRefMATH Sanz-Serna, J.M., Verwer, J.G., Hundsdorfer, W.H.: Convergence and order reduction of Runge–Kutta schemes applied to evolutionary problems in partial differential equations. Numer. Math. 50, 405–418 (1986)MathSciNetCrossRefMATH
35.
go back to reference Shu, C.-W.: High order ENO and WENO schemes for computational fluid dynamics. In: Deconinck, H. (ed.) High-Order Methods for Computational Physics, Lecture Notes in Computational Science and Engineering, pp. 439–582. Springer, Berlin (1999) Shu, C.-W.: High order ENO and WENO schemes for computational fluid dynamics. In: Deconinck, H. (ed.) High-Order Methods for Computational Physics, Lecture Notes in Computational Science and Engineering, pp. 439–582. Springer, Berlin (1999)
36.
go back to reference Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)MathSciNetCrossRefMATH Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)MathSciNetCrossRefMATH
37.
go back to reference Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial values problems. SIAM J. Numer. Anal. 45, 1226–1245 (2007)MathSciNetCrossRefMATH Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial values problems. SIAM J. Numer. Anal. 45, 1226–1245 (2007)MathSciNetCrossRefMATH
38.
go back to reference Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40, 469–491 (2002)MathSciNetCrossRefMATH Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40, 469–491 (2002)MathSciNetCrossRefMATH
39.
40.
go back to reference Wright, W.: General linear methods with inherent Runge–Kutta stability. Ph.D. Thesis, The University of Auckland, Auckland (2002) Wright, W.: General linear methods with inherent Runge–Kutta stability. Ph.D. Thesis, The University of Auckland, Auckland (2002)
41.
Metadata
Title
Strong Stability Preserving General Linear Methods with Runge–Kutta Stability
Authors
Giovanna Califano
Giuseppe Izzo
Zdzisław Jackiewicz
Publication date
18-01-2018
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 2/2018
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0646-5

Other articles of this Issue 2/2018

Journal of Scientific Computing 2/2018 Go to the issue

Premium Partner