Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 18/2021

23-08-2021

Structural, optical and electrical properties of Mn-doped ZnFe2O4 synthesized using sol–gel method

Authors: Harshpreet Cheema, Vedika Yadav, Ram Sundar Maurya, Varsha Yadav, Aditya Kumar, Nidhi Sharma, Parvej Ahamad Alvi, Upendra Kumar

Published in: Journal of Materials Science: Materials in Electronics | Issue 18/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The system Zn1-xMnxFe2O4 (x = 0, 2, and 4%) was prepared by sol–gel chemical route at 80 °C. X-Ray powder diffraction and Raman spectrum analysis were used to determine the preliminary phase of obtained samples. W–H and SSP plots were used to determine the crystallite size and micro-strain of samples. The surface charge and morphology of the samples were studied using zeta potential and scanning electron microscope analysis, respectively. The optical bandgap of the samples suggested that they were semiconducting. The dielectric characteristics of samples were examined as a function of temperature (60–600 °C) at various frequencies (1 kHz, 10 kHz, 100 kHz, and 1 MHz). The presence of interfacial and orientational polarization was indicated by dielectric constant and dissipation factor studies, which ranged from (0.7–460) to (0.3–0.8) with Mn and were found thermally stable up to 300 °C. The thermal dependence of DC conductivity demonstrates Arrhenius type transport with one, two, and three regions of conduction in sample ZF-0, ZF-2, and ZF-4 respectively. The sources of charge carriers in samples were \({V}_{o}^{\cdot \cdot }\), \(e^{\prime}\) and dipole defects \(\left( {V_{o}^{{ \cdot \cdot }} - 2{Fe_{{Fe^{{3 + }} }}^{{2 + }}} ^{\prime } } \right)\)/\(\left( {{2Mn^{{3 + }} _{Zn^{{2 + }} }}^.- 2{Fe_{{Fe^{{3 + }} }}^{{2 + }}} ^{\prime } } \right)\). The current work could help to identify the possible applications in semiconductor devices, thermally stable capacitors, and as mixed ionic electronic conductors in solid oxide fuel cells.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference K.L. Routray, D. Sanyal, D. Behera, Dielectric, magnetic, ferroelectric, and Mossbauer properties of bismuth substituted nanosized cobalt ferrites through glycine nitrate synthesis method. J. Appl. Phys. 122, 224104 (2017)CrossRef K.L. Routray, D. Sanyal, D. Behera, Dielectric, magnetic, ferroelectric, and Mossbauer properties of bismuth substituted nanosized cobalt ferrites through glycine nitrate synthesis method. J. Appl. Phys. 122, 224104 (2017)CrossRef
4.
go back to reference Y. Jia, B.W. Lee, C. Liu, Magnetic ZnFe2O4 nanocubes: synthesis and photocatalytic activity with visible light/H2 O2. IEEE Trans Magn 53, 1–5 (2016)CrossRef Y. Jia, B.W. Lee, C. Liu, Magnetic ZnFe2O4 nanocubes: synthesis and photocatalytic activity with visible light/H2 O2. IEEE Trans Magn 53, 1–5 (2016)CrossRef
5.
go back to reference L. Passerini, Ricerche sugli spinelli. II. I composti: CuAl2O4; MgAl2O4; MgFe2O4; ZnAl2O4; ZnCr2O4; ZnFe2O4; MnFe2O4. Gazz Chim. Ital. 60, 389–399 (1930) L. Passerini, Ricerche sugli spinelli. II. I composti: CuAl2O4; MgAl2O4; MgFe2O4; ZnAl2O4; ZnCr2O4; ZnFe2O4; MnFe2O4. Gazz Chim. Ital. 60, 389–399 (1930)
9.
go back to reference B. Jiang, C. Han, B. Li et al., In-situ crafting of ZnFe2O4 nanoparticles impregnated within continuous carbon network as advanced anode materials. ACS Nano 10, 2728–2735 (2016)CrossRef B. Jiang, C. Han, B. Li et al., In-situ crafting of ZnFe2O4 nanoparticles impregnated within continuous carbon network as advanced anode materials. ACS Nano 10, 2728–2735 (2016)CrossRef
10.
go back to reference F. Li, W. Zhan, Y. Su et al., Achieving excellent electromagnetic wave absorption of ZnFe2O4@ CNT/polyvinylidene fluoride flexible composite membranes by adjusting processing conditions. Compos. Part A Appl. Sci. Manuf. 133, 105866 (2020)CrossRef F. Li, W. Zhan, Y. Su et al., Achieving excellent electromagnetic wave absorption of ZnFe2O4@ CNT/polyvinylidene fluoride flexible composite membranes by adjusting processing conditions. Compos. Part A Appl. Sci. Manuf. 133, 105866 (2020)CrossRef
12.
go back to reference R.H. Vignesh, K.V. Sankar, S. Amaresh et al., Synthesis and characterization of MnFe2O4 nanoparticles for impedometric ammonia gas sensor. Sensors Actuators B Chem. 220, 50–58 (2015)CrossRef R.H. Vignesh, K.V. Sankar, S. Amaresh et al., Synthesis and characterization of MnFe2O4 nanoparticles for impedometric ammonia gas sensor. Sensors Actuators B Chem. 220, 50–58 (2015)CrossRef
14.
go back to reference A. Ashok, T. Ratnaji, L.J. Kennedy, J.J. Vijaya, Magnetically separable Zn1-xCuxFe2O4 (0≤ x≤ 0.5) nanocatalysts for the transesterification of waste cooking oil. Adv. Powder. Technol. 31, 2573–2585 (2020)CrossRef A. Ashok, T. Ratnaji, L.J. Kennedy, J.J. Vijaya, Magnetically separable Zn1-xCuxFe2O4 (0≤ x≤ 0.5) nanocatalysts for the transesterification of waste cooking oil. Adv. Powder. Technol. 31, 2573–2585 (2020)CrossRef
15.
go back to reference M.M.N. Ansari, S. Khan, Structural, electrical and optical properties of sol–gel synthesized cobalt substituted MnFe2O4 nanoparticles. Phys. B Condens. Matter. 520, 21–27 (2017)CrossRef M.M.N. Ansari, S. Khan, Structural, electrical and optical properties of sol–gel synthesized cobalt substituted MnFe2O4 nanoparticles. Phys. B Condens. Matter. 520, 21–27 (2017)CrossRef
16.
go back to reference S. Zawar, S. Atiq, M. Tabasum et al., Highly stable dielectric frequency response of chemically synthesized Mn-substituted ZnFe2O4. J Saudi Chem. Soc. 23, 417–426 (2019)CrossRef S. Zawar, S. Atiq, M. Tabasum et al., Highly stable dielectric frequency response of chemically synthesized Mn-substituted ZnFe2O4. J Saudi Chem. Soc. 23, 417–426 (2019)CrossRef
17.
go back to reference E. Hema, A. Manikandan, M. Gayathri et al., The role of Mn2+-doping on structural, morphological, optical, magnetic and catalytic properties of spinel ZnFe2O4 nanoparticles. J. Nanosci. Nanotechnol. 16, 5929–5943 (2016)CrossRef E. Hema, A. Manikandan, M. Gayathri et al., The role of Mn2+-doping on structural, morphological, optical, magnetic and catalytic properties of spinel ZnFe2O4 nanoparticles. J. Nanosci. Nanotechnol. 16, 5929–5943 (2016)CrossRef
18.
go back to reference Y. Zhao, H. An, G. Dong et al., Elevated removal of di-n-butyl phthalate by catalytic ozonation over magnetic Mn-doped ferrospinel ZnFe2O4 materials: Efficiency and mechanism. Appl. Surf. Sci. 505, 144476 (2020)CrossRef Y. Zhao, H. An, G. Dong et al., Elevated removal of di-n-butyl phthalate by catalytic ozonation over magnetic Mn-doped ferrospinel ZnFe2O4 materials: Efficiency and mechanism. Appl. Surf. Sci. 505, 144476 (2020)CrossRef
19.
go back to reference R.D. Raland, J.P. Borah, Efficacy of heat generation in CTAB coated Mn doped ZnFe2O4 nanoparticles for magnetic hyperthermia. J. Phys. D Appl. Phys. 50, 35001 (2016)CrossRef R.D. Raland, J.P. Borah, Efficacy of heat generation in CTAB coated Mn doped ZnFe2O4 nanoparticles for magnetic hyperthermia. J. Phys. D Appl. Phys. 50, 35001 (2016)CrossRef
22.
go back to reference R. Sagayaraj, S. Aravazhi, P. Praveen, G. Chandrasekaran, Structural, morphological and magnetic characters of PVP coated ZnFe2O4 nanoparticles. J. Mater. Sci. Mater. Electron. 29, 2151–2158 (2018)CrossRef R. Sagayaraj, S. Aravazhi, P. Praveen, G. Chandrasekaran, Structural, morphological and magnetic characters of PVP coated ZnFe2O4 nanoparticles. J. Mater. Sci. Mater. Electron. 29, 2151–2158 (2018)CrossRef
23.
go back to reference C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites. J. Phys. Chem. B 104, 1141–1145 (2000)CrossRef C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites. J. Phys. Chem. B 104, 1141–1145 (2000)CrossRef
24.
go back to reference L. Wang, A. McCarthy, K.J. Takeuchi et al., A combined experimental and theoretical study of lithiation mechanism in ZnFe2O4 anode materials. MRS Adv. 3, 773–778 (2018)CrossRef L. Wang, A. McCarthy, K.J. Takeuchi et al., A combined experimental and theoretical study of lithiation mechanism in ZnFe2O4 anode materials. MRS Adv. 3, 773–778 (2018)CrossRef
25.
go back to reference M. Dhiman, R. Sharma, V. Kumar, S. Singhal, Morphology controlled hydrothermal synthesis and photocatalytic properties of ZnFe2O4 nanostructures. Ceram. Int. 42, 12594–12605 (2016)CrossRef M. Dhiman, R. Sharma, V. Kumar, S. Singhal, Morphology controlled hydrothermal synthesis and photocatalytic properties of ZnFe2O4 nanostructures. Ceram. Int. 42, 12594–12605 (2016)CrossRef
26.
go back to reference M. Hofmann, S.J. Campbell, H. Ehrhardt, R. Feyerherm, The magnetic behaviour of nanostructured zinc ferrite. J. Mater. Sci. 39, 5057–5065 (2004)CrossRef M. Hofmann, S.J. Campbell, H. Ehrhardt, R. Feyerherm, The magnetic behaviour of nanostructured zinc ferrite. J. Mater. Sci. 39, 5057–5065 (2004)CrossRef
27.
go back to reference K. Tanaka, M. Makita, Y. Shimizugawa et al., Structure and high magnetization of rapidly quenched zinc ferrite. J. Phys. Chem. Solids 59, 1611–1618 (1998)CrossRef K. Tanaka, M. Makita, Y. Shimizugawa et al., Structure and high magnetization of rapidly quenched zinc ferrite. J. Phys. Chem. Solids 59, 1611–1618 (1998)CrossRef
28.
go back to reference S. Li, Q. Liu, R. Liu et al., Removal performance of methyl blue onto magnetic ZnFe2O4 nanoparticles prepared via the solution combustion process. J. Nanosci. Nanotechnol. 17, 4112–4118 (2017)CrossRef S. Li, Q. Liu, R. Liu et al., Removal performance of methyl blue onto magnetic ZnFe2O4 nanoparticles prepared via the solution combustion process. J. Nanosci. Nanotechnol. 17, 4112–4118 (2017)CrossRef
29.
go back to reference P.A. Vinosha, L.A. Mely, J.E. Jeronsia et al., Synthesis and properties of spinel ZnFe2O4 nanoparticles by facile co-precipitation route. Optik (Stuttg) 134, 99–108 (2017)CrossRef P.A. Vinosha, L.A. Mely, J.E. Jeronsia et al., Synthesis and properties of spinel ZnFe2O4 nanoparticles by facile co-precipitation route. Optik (Stuttg) 134, 99–108 (2017)CrossRef
30.
go back to reference M. Lakshmi, K.V. Kumar, K. Thyagarajan, An investigation of structural and magnetic properties of Cr–Zn ferrite nanoparticles prepared by a sol–gel process. J. Nanostructure. Chem. 5, 365–373 (2015)CrossRef M. Lakshmi, K.V. Kumar, K. Thyagarajan, An investigation of structural and magnetic properties of Cr–Zn ferrite nanoparticles prepared by a sol–gel process. J. Nanostructure. Chem. 5, 365–373 (2015)CrossRef
34.
go back to reference C.V.V.M. Gopi, R. Vinodh, S. Sambasivam et al., Co9S8-Ni3S2/CuMn2O4-NiMn2O4 and MnFe2O4-ZnFe2O4/graphene as binder-free cathode and anode materials for high energy density supercapacitors. Chem. Eng. J. 381, 122640 (2020)CrossRef C.V.V.M. Gopi, R. Vinodh, S. Sambasivam et al., Co9S8-Ni3S2/CuMn2O4-NiMn2O4 and MnFe2O4-ZnFe2O4/graphene as binder-free cathode and anode materials for high energy density supercapacitors. Chem. Eng. J. 381, 122640 (2020)CrossRef
42.
go back to reference Galinetto P, Albini B, Bini M, Mozzati MC, Raman spectroscopy in zinc ferrites nanoparticles. Raman Spectrosc. 223 (2018) Galinetto P, Albini B, Bini M, Mozzati MC, Raman spectroscopy in zinc ferrites nanoparticles. Raman Spectrosc. 223 (2018)
45.
go back to reference U. Kumar, J. Ansaree, S. Upadhyay, Structural and optical characterizations of BaSnO3 nanopowder synthesized by aqueous sol–gel sol–gel method. Process Appl. Ceram. 11, 177–184 (2017)CrossRef U. Kumar, J. Ansaree, S. Upadhyay, Structural and optical characterizations of BaSnO3 nanopowder synthesized by aqueous sol–gel sol–gel method. Process Appl. Ceram. 11, 177–184 (2017)CrossRef
46.
go back to reference M. Irshad, Q. ul Ain, K. Siraj et al., Evaluation of BaZr0.8X0.2O3 (X= Y, Gd, Sm) proton conducting electrolytes sintered at low temperature for IT-SOFC synthesized by cost effective combustion method. J. Alloys Compd. 815, 152389 (2020)CrossRef M. Irshad, Q. ul Ain, K. Siraj et al., Evaluation of BaZr0.8X0.2O3 (X= Y, Gd, Sm) proton conducting electrolytes sintered at low temperature for IT-SOFC synthesized by cost effective combustion method. J. Alloys Compd. 815, 152389 (2020)CrossRef
47.
go back to reference Kumar U, Upadhyay S, Sr2SnO4 ruddlesden popper oxide: future material for renewable energy applications. (Wiley Online Library, 2020) Kumar U, Upadhyay S, Sr2SnO4 ruddlesden popper oxide: future material for renewable energy applications. (Wiley Online Library, 2020)
53.
go back to reference Kao KC, Dielectric phenomena in solids (2004) Kao KC, Dielectric phenomena in solids (2004)
56.
go back to reference Yousuf MA, Hussain S, Kousar T, et al., The impact of pH on structural and electrical properties of er-substituted znfe2o4 nanoparticles synthesized via wet chemical route. J. Supercond. Nov. Magn. 1–9 (2021) Yousuf MA, Hussain S, Kousar T, et al., The impact of pH on structural and electrical properties of er-substituted znfe2o4 nanoparticles synthesized via wet chemical route. J. Supercond. Nov. Magn. 1–9 (2021)
57.
go back to reference Mohanty D, Mallick P, Biswal SK, et al., Investigation of structural, dielectric and electrical properties of ZnFe2O4 composite. Mater. Today Proc. (2020) Mohanty D, Mallick P, Biswal SK, et al., Investigation of structural, dielectric and electrical properties of ZnFe2O4 composite. Mater. Today Proc. (2020)
58.
go back to reference N. Sivakumar, A. Narayanasamy, N. Ponpandian, G. Govindaraj, Grain size effect on the dielectric behavior of nanostructured Ni0.5Zn0.5Fe2O4. J Appl Phys 101, 84116 (2007)CrossRef N. Sivakumar, A. Narayanasamy, N. Ponpandian, G. Govindaraj, Grain size effect on the dielectric behavior of nanostructured Ni0.5Zn0.5Fe2O4. J Appl Phys 101, 84116 (2007)CrossRef
59.
go back to reference S.S. Kumbhar, M.A. Mahadik, S.S. Shinde et al., Fabrication of ZnFe2O4 films and its application in photoelectrocatalytic degradation of salicylic acid. J. Photochem. Photobiol. B Biol. 142, 118–123 (2015)CrossRef S.S. Kumbhar, M.A. Mahadik, S.S. Shinde et al., Fabrication of ZnFe2O4 films and its application in photoelectrocatalytic degradation of salicylic acid. J. Photochem. Photobiol. B Biol. 142, 118–123 (2015)CrossRef
Metadata
Title
Structural, optical and electrical properties of Mn-doped ZnFe2O4 synthesized using sol–gel method
Authors
Harshpreet Cheema
Vedika Yadav
Ram Sundar Maurya
Varsha Yadav
Aditya Kumar
Nidhi Sharma
Parvej Ahamad Alvi
Upendra Kumar
Publication date
23-08-2021
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 18/2021
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-06847-w

Other articles of this Issue 18/2021

Journal of Materials Science: Materials in Electronics 18/2021 Go to the issue