Skip to main content
Top
Published in: Metallurgist 5-6/2012

01-09-2012

Structure and mechanical behavior during indentation of biocompatible nanostructured titanium alloys and coatings

Authors: E. A. Levashov, M. I. Petrzhik, F. V. Kiryukhantsev-Korneev, D. V. Shtansky, S. D. Prokoshkin, D. V. Gunderov, A. N. Sheveiko, A. V. Korotitsky, R. Z. Valiev

Published in: Metallurgist | Issue 5-6/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The structure of biocompatible titanium alloys and coatings, nanostructured by rapid plastic deformation technology, thermomechanical treatment, and magnetron sputtering, is studied. Measured indentation is used to obtain a mechanical property database. Values of hardness, elasticity modulus, and elastic recovery of titanium, and also Ti–Ni alloys with shape memory and a superelasticity effect Ti–Nb–Zr, Ti–Nb–Ta that are in microstructured and nanostructured conditions, are measured. It is shown that with indentation of a Vickers diamond indenter into a TiCCaPCON coating deformation proceeds inhomogeneously by periodic formation of shear steps.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. M. Brunette, P. Tengvall, M. Textor, and P. Thomsen, Titanium in Medicine. Springer, 2001. D. M. Brunette, P. Tengvall, M. Textor, and P. Thomsen, Titanium in Medicine. Springer, 2001.
2.
go back to reference R. Z. Valiev and I. V. Aleksandrov, Nanostructured Metallic Materials: Preparation, Structure, and Properties [in Russian], IKTs Akademkniga, Moscow (2007). R. Z. Valiev and I. V. Aleksandrov, Nanostructured Metallic Materials: Preparation, Structure, and Properties [in Russian], IKTs Akademkniga, Moscow (2007).
3.
go back to reference R. Z. Valiev, I. P. Semenova, V. V. Latysh, et al., “Nanostructured titanium for biomedical uses: new developments and prospects for commercialization,” Ross. Nanotekhnol, 3, No. 9/10 58 (2008). R. Z. Valiev, I. P. Semenova, V. V. Latysh, et al., “Nanostructured titanium for biomedical uses: new developments and prospects for commercialization,” Ross. Nanotekhnol, 3, No. 9/10 58 (2008).
4.
go back to reference G. I. Raab, R. Z. Valiev, D. V. Gunderov, et al. “Ultrafine-grained titanium rods produced by ECAP-Conform,” Mat. Sci. Forum, 584–586, 80–88 (2008).CrossRef G. I. Raab, R. Z. Valiev, D. V. Gunderov, et al. “Ultrafine-grained titanium rods produced by ECAP-Conform,” Mat. Sci. Forum, 584–586, 80–88 (2008).CrossRef
5.
go back to reference G. I. Raab, A. V. Polyakov, D. V. Gunderov, and R. Z. Valiev, “Nanostructure formation and properties of titanium bars during equal-channel extrusion “Conform” followed by drawing,” Metally, No. 5, 57–62 (2009). G. I. Raab, A. V. Polyakov, D. V. Gunderov, and R. Z. Valiev, “Nanostructure formation and properties of titanium bars during equal-channel extrusion “Conform” followed by drawing,” Metally, No. 5, 57–62 (2009).
6.
go back to reference T. W. Duerig, K. N. Melton, D. Stockel, and C. M. Wayman (eds.), Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann Ltd., London (1990). T. W. Duerig, K. N. Melton, D. Stockel, and C. M. Wayman (eds.), Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann Ltd., London (1990).
7.
go back to reference K. Otsuka and C. M. Wayman (eds.) Shape Memory Materials, Cambridge Univ. Press, Cambridge (1999). K. Otsuka and C. M. Wayman (eds.) Shape Memory Materials, Cambridge Univ. Press, Cambridge (1999).
8.
go back to reference V. Brailovski, S. Prokoshkin, F. Terriault, and P. Trochu (eds.) Shape Memory Alloys: Fundamentals, Modelling and Applications, ETS Publ., Montreal (2003). V. Brailovski, S. Prokoshkin, F. Terriault, and P. Trochu (eds.) Shape Memory Alloys: Fundamentals, Modelling and Applications, ETS Publ., Montreal (2003).
9.
go back to reference A. A. Monasevich (ed.), Shape Memory Effects and Their Use in Medicine [in Russian], Nauka, Moscow (1992). A. A. Monasevich (ed.), Shape Memory Effects and Their Use in Medicine [in Russian], Nauka, Moscow (1992).
10.
go back to reference V. G. Pushin (ed.), Titanium Nickelide Alloys with Shape Memory, Part 1 [in Russian], URO RAN, Ekaterinberg (2006). V. G. Pushin (ed.), Titanium Nickelide Alloys with Shape Memory, Part 1 [in Russian], URO RAN, Ekaterinberg (2006).
11.
go back to reference M. I. Petrzhik and S. G. Fedotov, “Thermal stability and dynamics of martensitic structure in Ti-(Ta,Nb) alloys,” Proc. 16th Conf. on Applied Crystallography, World Sci. Pbl. (1995), pp. 273–276. M. I. Petrzhik and S. G. Fedotov, “Thermal stability and dynamics of martensitic structure in Ti-(Ta,Nb) alloys,” Proc. 16th Conf. on Applied Crystallography, World Sci. Pbl. (1995), pp. 273–276.
12.
go back to reference J. I. Kim, H. Y. Kim, T. Inamura, et al., “Shape memory characteristics of Ti–22Nb–(2–8)Zr (at.%) biomedical alloys,” Mater. Sci. Eng. A., 403, 334–339 (2005).CrossRef J. I. Kim, H. Y. Kim, T. Inamura, et al., “Shape memory characteristics of Ti–22Nb–(2–8)Zr (at.%) biomedical alloys,” Mater. Sci. Eng. A., 403, 334–339 (2005).CrossRef
13.
go back to reference H. Y. Kim, T. Sasaki, K. Okutsu, et al., “Texture and shape memory behavior of Ti–22Nb–6Ta alloy,” Acta Mater., 54, 423–433 (2006).CrossRef H. Y. Kim, T. Sasaki, K. Okutsu, et al., “Texture and shape memory behavior of Ti–22Nb–6Ta alloy,” Acta Mater., 54, 423–433 (2006).CrossRef
14.
go back to reference T. Yoneyama and S. Miyazaki, Shape Memory Alloys for Biomedical Applications, Woodhead Publishing Ltd., England (2010). T. Yoneyama and S. Miyazaki, Shape Memory Alloys for Biomedical Applications, Woodhead Publishing Ltd., England (2010).
15.
go back to reference V. Brailovski, S. D. Prokoshkin, I. Yu. Khmelevskaya, et al., “Structure and properties of the Ti-50,0 at. % Ni alloy after strain hardening and nanocrystallizing thermomechanical processing,” Mater. Trans., 47, No. 3, 795–804 (2006).CrossRef V. Brailovski, S. D. Prokoshkin, I. Yu. Khmelevskaya, et al., “Structure and properties of the Ti-50,0 at. % Ni alloy after strain hardening and nanocrystallizing thermomechanical processing,” Mater. Trans., 47, No. 3, 795–804 (2006).CrossRef
16.
go back to reference S. D. Prokoshkin, V. Brailovski, K. E. Inaekyan, et al., “Structure and properties of severely cold-rolled and annealed Ti–Ni shape memory alloys,” Mater. Sci. Eng. A., 481–482, 114–118 (2008). S. D. Prokoshkin, V. Brailovski, K. E. Inaekyan, et al., “Structure and properties of severely cold-rolled and annealed Ti–Ni shape memory alloys,” Mater. Sci. Eng. A., 481–482, 114–118 (2008).
17.
go back to reference S. D. Prokoshkin, V. Brailovski, A. V. Korotitsky, et al., “Features of titanium nickelide structure formation during thermomechanical treatment, including from moderate to intense cold plastic deformation,” FMM, 110, No. 3, 305–320 (2010). S. D. Prokoshkin, V. Brailovski, A. V. Korotitsky, et al., “Features of titanium nickelide structure formation during thermomechanical treatment, including from moderate to intense cold plastic deformation,” FMM, 110, No. 3, 305–320 (2010).
18.
go back to reference S. M. Dubinskiy, S. D. Prokoshkin, V. Brailovski, et al., “Structure formation during thermomechanical processing of Ti–Nb–Zr(Ta) alloys and manifestation of the shape-memory effect,” Phys. Metals and Metallography, 112, No. 5, 529–542 (2011). S. M. Dubinskiy, S. D. Prokoshkin, V. Brailovski, et al., “Structure formation during thermomechanical processing of Ti–Nb–Zr(Ta) alloys and manifestation of the shape-memory effect,” Phys. Metals and Metallography, 112, No. 5, 529–542 (2011).
19.
go back to reference V. Demers, V. Brailovski, S. Prokoshkin, and K. Inaekyan, “Thermomechanical fatigue of nanostructured Ti–Ni shape memory alloys,” Mater. Sci. Eng. A, 513/514, 185–196 (2009).CrossRef V. Demers, V. Brailovski, S. Prokoshkin, and K. Inaekyan, “Thermomechanical fatigue of nanostructured Ti–Ni shape memory alloys,” Mater. Sci. Eng. A, 513/514, 185–196 (2009).CrossRef
20.
go back to reference V. Brailovski, S. Prokoshkin, K. Inaekyan, and V. Demers, “Functional properties of nanocrystalline, submicrocrystalline and polygonized Ti–Ni alloys processed by cold rolling and post-deformation annealing,” J. Alloys and Compounds, 509, No. 5, 2066–2075 (2011).CrossRef V. Brailovski, S. Prokoshkin, K. Inaekyan, and V. Demers, “Functional properties of nanocrystalline, submicrocrystalline and polygonized Ti–Ni alloys processed by cold rolling and post-deformation annealing,” J. Alloys and Compounds, 509, No. 5, 2066–2075 (2011).CrossRef
21.
go back to reference V. Brailovski, S. Prokoshkin, K. Inaekyan, et al., “Mechanical properties of thermomechanically processed metastable beta Ti–Nb–Zr alloys for biomedical applications,” Mat. Sci. Forum, 706–709, 455–460 (2012).CrossRef V. Brailovski, S. Prokoshkin, K. Inaekyan, et al., “Mechanical properties of thermomechanically processed metastable beta Ti–Nb–Zr alloys for biomedical applications,” Mat. Sci. Forum, 706–709, 455–460 (2012).CrossRef
22.
go back to reference D. V. Shtansky, N. A. Glushankova, A. N. Sheveiko, et al., “Design, characterization and testing of TiC-based multicomponent coatings for load-bearing biomedical applications,” Biomaterials, 26, 2909–2924 (2005).CrossRef D. V. Shtansky, N. A. Glushankova, A. N. Sheveiko, et al., “Design, characterization and testing of TiC-based multicomponent coatings for load-bearing biomedical applications,” Biomaterials, 26, 2909–2924 (2005).CrossRef
23.
go back to reference D. A. Shtansky, I. A. Bashkov, E. A. Levashov, et al., “Multifunctional nanostructured coatings for implants operating under load,” Dokl. RAN, 44, No. 2, 1–4 (2005). D. A. Shtansky, I. A. Bashkov, E. A. Levashov, et al., “Multifunctional nanostructured coatings for implants operating under load,” Dokl. RAN, 44, No. 2, 1–4 (2005).
24.
go back to reference D. V. Shtansky, N. A. Gloushankova, I. A. Bashkova, et al., “Multifunctional biocompatible nanostructured coatings for load-bearing implants,” Surf. Coat. Technol., 201, 4111–4118 (2006).CrossRef D. V. Shtansky, N. A. Gloushankova, I. A. Bashkova, et al., “Multifunctional biocompatible nanostructured coatings for load-bearing implants,” Surf. Coat. Technol., 201, 4111–4118 (2006).CrossRef
25.
go back to reference E. A. Levashov, Yu. S. Pogozhev, V. V. Kurbatkina, et al., Advances in Ceramics – Synthesis and Characterization, Processing and Specific Application, edited by C. Sikalidis, INTECH, ISBN 978-953-307-505-1 (2011). E. A. Levashov, Yu. S. Pogozhev, V. V. Kurbatkina, et al., Advances in Ceramics – Synthesis and Characterization, Processing and Specific Application, edited by C. Sikalidis, INTECH, ISBN 978-953-307-505-1 (2011).
26.
go back to reference E. A. Levashov, A. S. Rogachev, V. V. Kurbatkina, et al., Promising Materials and Technology for Self-Propagating High-Temperature Synthesis: Teaching Aid [in Russian] ID MISiS, Moscow (2011). E. A. Levashov, A. S. Rogachev, V. V. Kurbatkina, et al., Promising Materials and Technology for Self-Propagating High-Temperature Synthesis: Teaching Aid [in Russian] ID MISiS, Moscow (2011).
27.
go back to reference M. I. Petrzhik and E. A. Levashov, “Contemporary methods for studying functional surfaces of promising materials under mechanical contact conditions,” Kristallografiya, 52, No. 6, 1002–1010 (2007). M. I. Petrzhik and E. A. Levashov, “Contemporary methods for studying functional surfaces of promising materials under mechanical contact conditions,” Kristallografiya, 52, No. 6, 1002–1010 (2007).
28.
go back to reference E. A. Levashov, D. V. Shtansky, F. V. Kiryukhantsev-Korneev, et al., “Multifunctional nanostructured coatings: preparation, structure, and provision of mechanical and tribological property measurement unification,” Deform. Razrushenie, No. 11, 19–35 (2009). E. A. Levashov, D. V. Shtansky, F. V. Kiryukhantsev-Korneev, et al., “Multifunctional nanostructured coatings: preparation, structure, and provision of mechanical and tribological property measurement unification,” Deform. Razrushenie, No. 11, 19–35 (2009).
29.
go back to reference M. I. Petrzhik, M. R. Filonov, K. A. Pechorkin, et al., “Wear resistance and mechanical properties of alloys for medical purposes,” Izv. Vyssh. Uchebn. Zaved., Tsvet. Met., No. 6, 62–69 (2005). M. I. Petrzhik, M. R. Filonov, K. A. Pechorkin, et al., “Wear resistance and mechanical properties of alloys for medical purposes,” Izv. Vyssh. Uchebn. Zaved., Tsvet. Met., No. 6, 62–69 (2005).
30.
go back to reference W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., No. 7, 1564 (1992). W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., No. 7, 1564 (1992).
31.
go back to reference S. D. Prokoshkin, V. V. Stolyarov, A. V. Korotitsky, et al., “Study of the effect of electric pulse action parameters on structure and functional properties of Ti–Ni alloy with shape memory,” FMM, 108, No. 6, 649–656 (2009). S. D. Prokoshkin, V. V. Stolyarov, A. V. Korotitsky, et al., “Study of the effect of electric pulse action parameters on structure and functional properties of Ti–Ni alloy with shape memory,” FMM, 108, No. 6, 649–656 (2009).
32.
go back to reference S. Prokoshkin, V. Brailovski, K. Inaekyan, et al., “A comparative study of structure formation in thermomechanically treated Ti–Ni and Ti–Nb–(Zr, Ta) SMA,” Mat. Sci. Forum, 706–709, 1931–1936 (2012).CrossRef S. Prokoshkin, V. Brailovski, K. Inaekyan, et al., “A comparative study of structure formation in thermomechanically treated Ti–Ni and Ti–Nb–(Zr, Ta) SMA,” Mat. Sci. Forum, 706–709, 1931–1936 (2012).CrossRef
33.
go back to reference B. H. Lohse and A. Calka, “ Raman spectroscopy sheds new light on TiC formation during the controlled milling of titanium and carbon,” J. Alloy. Compd., 434–435, 405 (2007).CrossRef B. H. Lohse and A. Calka, “ Raman spectroscopy sheds new light on TiC formation during the controlled milling of titanium and carbon,” J. Alloy. Compd., 434–435, 405 (2007).CrossRef
34.
go back to reference Yu. S. Zhukova, M. I. Petrzhik, and S. D. Prokoshkin, “Evaluation of the crystallographic strain reserve with reverse martensitic β – α″ transformation in titanium alloys with shape memory effect,” Metally, No. 6, 77–84 (2010). Yu. S. Zhukova, M. I. Petrzhik, and S. D. Prokoshkin, “Evaluation of the crystallographic strain reserve with reverse martensitic β – α″ transformation in titanium alloys with shape memory effect,” Metally, No. 6, 77–84 (2010).
35.
go back to reference S. D. Prokoshkin, A. V. Korotitskiy, V. Brailovski, et al., “Crystal lattice of martensite and the reserve of recoverable strain of thermally and thermomechanically treated Ti–Ni shape memory alloys,” Phys. Met. Metall., 112, No. 2, 170–187 (2011).CrossRef S. D. Prokoshkin, A. V. Korotitskiy, V. Brailovski, et al., “Crystal lattice of martensite and the reserve of recoverable strain of thermally and thermomechanically treated Ti–Ni shape memory alloys,” Phys. Met. Metall., 112, No. 2, 170–187 (2011).CrossRef
36.
go back to reference R. A. Andrievski and G. V. Kalinnikov, “Physical-mechanical and physicochemical properties of thin nanostructured boride/nitride films,” Surf. Coat. Technol., 142–144, 573–581 (2001).CrossRef R. A. Andrievski and G. V. Kalinnikov, “Physical-mechanical and physicochemical properties of thin nanostructured boride/nitride films,” Surf. Coat. Technol., 142–144, 573–581 (2001).CrossRef
37.
go back to reference D. V. Shtansky, S. A. Kulinich, E. A. Levashov, et al., “Localized deformation of multicomponent thin films,” Thin Solid Films, 420–421, 330–337 (2002).CrossRef D. V. Shtansky, S. A. Kulinich, E. A. Levashov, et al., “Localized deformation of multicomponent thin films,” Thin Solid Films, 420–421, 330–337 (2002).CrossRef
Metadata
Title
Structure and mechanical behavior during indentation of biocompatible nanostructured titanium alloys and coatings
Authors
E. A. Levashov
M. I. Petrzhik
F. V. Kiryukhantsev-Korneev
D. V. Shtansky
S. D. Prokoshkin
D. V. Gunderov
A. N. Sheveiko
A. V. Korotitsky
R. Z. Valiev
Publication date
01-09-2012
Publisher
Springer US
Published in
Metallurgist / Issue 5-6/2012
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-012-9589-5

Other articles of this Issue 5-6/2012

Metallurgist 5-6/2012 Go to the issue

Premium Partners