Skip to main content
Erschienen in: Metallurgist 5-6/2012

01.09.2012

Structure and mechanical behavior during indentation of biocompatible nanostructured titanium alloys and coatings

verfasst von: E. A. Levashov, M. I. Petrzhik, F. V. Kiryukhantsev-Korneev, D. V. Shtansky, S. D. Prokoshkin, D. V. Gunderov, A. N. Sheveiko, A. V. Korotitsky, R. Z. Valiev

Erschienen in: Metallurgist | Ausgabe 5-6/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The structure of biocompatible titanium alloys and coatings, nanostructured by rapid plastic deformation technology, thermomechanical treatment, and magnetron sputtering, is studied. Measured indentation is used to obtain a mechanical property database. Values of hardness, elasticity modulus, and elastic recovery of titanium, and also Ti–Ni alloys with shape memory and a superelasticity effect Ti–Nb–Zr, Ti–Nb–Ta that are in microstructured and nanostructured conditions, are measured. It is shown that with indentation of a Vickers diamond indenter into a TiCCaPCON coating deformation proceeds inhomogeneously by periodic formation of shear steps.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. M. Brunette, P. Tengvall, M. Textor, and P. Thomsen, Titanium in Medicine. Springer, 2001. D. M. Brunette, P. Tengvall, M. Textor, and P. Thomsen, Titanium in Medicine. Springer, 2001.
2.
Zurück zum Zitat R. Z. Valiev and I. V. Aleksandrov, Nanostructured Metallic Materials: Preparation, Structure, and Properties [in Russian], IKTs Akademkniga, Moscow (2007). R. Z. Valiev and I. V. Aleksandrov, Nanostructured Metallic Materials: Preparation, Structure, and Properties [in Russian], IKTs Akademkniga, Moscow (2007).
3.
Zurück zum Zitat R. Z. Valiev, I. P. Semenova, V. V. Latysh, et al., “Nanostructured titanium for biomedical uses: new developments and prospects for commercialization,” Ross. Nanotekhnol, 3, No. 9/10 58 (2008). R. Z. Valiev, I. P. Semenova, V. V. Latysh, et al., “Nanostructured titanium for biomedical uses: new developments and prospects for commercialization,” Ross. Nanotekhnol, 3, No. 9/10 58 (2008).
4.
Zurück zum Zitat G. I. Raab, R. Z. Valiev, D. V. Gunderov, et al. “Ultrafine-grained titanium rods produced by ECAP-Conform,” Mat. Sci. Forum, 584–586, 80–88 (2008).CrossRef G. I. Raab, R. Z. Valiev, D. V. Gunderov, et al. “Ultrafine-grained titanium rods produced by ECAP-Conform,” Mat. Sci. Forum, 584–586, 80–88 (2008).CrossRef
5.
Zurück zum Zitat G. I. Raab, A. V. Polyakov, D. V. Gunderov, and R. Z. Valiev, “Nanostructure formation and properties of titanium bars during equal-channel extrusion “Conform” followed by drawing,” Metally, No. 5, 57–62 (2009). G. I. Raab, A. V. Polyakov, D. V. Gunderov, and R. Z. Valiev, “Nanostructure formation and properties of titanium bars during equal-channel extrusion “Conform” followed by drawing,” Metally, No. 5, 57–62 (2009).
6.
Zurück zum Zitat T. W. Duerig, K. N. Melton, D. Stockel, and C. M. Wayman (eds.), Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann Ltd., London (1990). T. W. Duerig, K. N. Melton, D. Stockel, and C. M. Wayman (eds.), Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann Ltd., London (1990).
7.
Zurück zum Zitat K. Otsuka and C. M. Wayman (eds.) Shape Memory Materials, Cambridge Univ. Press, Cambridge (1999). K. Otsuka and C. M. Wayman (eds.) Shape Memory Materials, Cambridge Univ. Press, Cambridge (1999).
8.
Zurück zum Zitat V. Brailovski, S. Prokoshkin, F. Terriault, and P. Trochu (eds.) Shape Memory Alloys: Fundamentals, Modelling and Applications, ETS Publ., Montreal (2003). V. Brailovski, S. Prokoshkin, F. Terriault, and P. Trochu (eds.) Shape Memory Alloys: Fundamentals, Modelling and Applications, ETS Publ., Montreal (2003).
9.
Zurück zum Zitat A. A. Monasevich (ed.), Shape Memory Effects and Their Use in Medicine [in Russian], Nauka, Moscow (1992). A. A. Monasevich (ed.), Shape Memory Effects and Their Use in Medicine [in Russian], Nauka, Moscow (1992).
10.
Zurück zum Zitat V. G. Pushin (ed.), Titanium Nickelide Alloys with Shape Memory, Part 1 [in Russian], URO RAN, Ekaterinberg (2006). V. G. Pushin (ed.), Titanium Nickelide Alloys with Shape Memory, Part 1 [in Russian], URO RAN, Ekaterinberg (2006).
11.
Zurück zum Zitat M. I. Petrzhik and S. G. Fedotov, “Thermal stability and dynamics of martensitic structure in Ti-(Ta,Nb) alloys,” Proc. 16th Conf. on Applied Crystallography, World Sci. Pbl. (1995), pp. 273–276. M. I. Petrzhik and S. G. Fedotov, “Thermal stability and dynamics of martensitic structure in Ti-(Ta,Nb) alloys,” Proc. 16th Conf. on Applied Crystallography, World Sci. Pbl. (1995), pp. 273–276.
12.
Zurück zum Zitat J. I. Kim, H. Y. Kim, T. Inamura, et al., “Shape memory characteristics of Ti–22Nb–(2–8)Zr (at.%) biomedical alloys,” Mater. Sci. Eng. A., 403, 334–339 (2005).CrossRef J. I. Kim, H. Y. Kim, T. Inamura, et al., “Shape memory characteristics of Ti–22Nb–(2–8)Zr (at.%) biomedical alloys,” Mater. Sci. Eng. A., 403, 334–339 (2005).CrossRef
13.
Zurück zum Zitat H. Y. Kim, T. Sasaki, K. Okutsu, et al., “Texture and shape memory behavior of Ti–22Nb–6Ta alloy,” Acta Mater., 54, 423–433 (2006).CrossRef H. Y. Kim, T. Sasaki, K. Okutsu, et al., “Texture and shape memory behavior of Ti–22Nb–6Ta alloy,” Acta Mater., 54, 423–433 (2006).CrossRef
14.
Zurück zum Zitat T. Yoneyama and S. Miyazaki, Shape Memory Alloys for Biomedical Applications, Woodhead Publishing Ltd., England (2010). T. Yoneyama and S. Miyazaki, Shape Memory Alloys for Biomedical Applications, Woodhead Publishing Ltd., England (2010).
15.
Zurück zum Zitat V. Brailovski, S. D. Prokoshkin, I. Yu. Khmelevskaya, et al., “Structure and properties of the Ti-50,0 at. % Ni alloy after strain hardening and nanocrystallizing thermomechanical processing,” Mater. Trans., 47, No. 3, 795–804 (2006).CrossRef V. Brailovski, S. D. Prokoshkin, I. Yu. Khmelevskaya, et al., “Structure and properties of the Ti-50,0 at. % Ni alloy after strain hardening and nanocrystallizing thermomechanical processing,” Mater. Trans., 47, No. 3, 795–804 (2006).CrossRef
16.
Zurück zum Zitat S. D. Prokoshkin, V. Brailovski, K. E. Inaekyan, et al., “Structure and properties of severely cold-rolled and annealed Ti–Ni shape memory alloys,” Mater. Sci. Eng. A., 481–482, 114–118 (2008). S. D. Prokoshkin, V. Brailovski, K. E. Inaekyan, et al., “Structure and properties of severely cold-rolled and annealed Ti–Ni shape memory alloys,” Mater. Sci. Eng. A., 481–482, 114–118 (2008).
17.
Zurück zum Zitat S. D. Prokoshkin, V. Brailovski, A. V. Korotitsky, et al., “Features of titanium nickelide structure formation during thermomechanical treatment, including from moderate to intense cold plastic deformation,” FMM, 110, No. 3, 305–320 (2010). S. D. Prokoshkin, V. Brailovski, A. V. Korotitsky, et al., “Features of titanium nickelide structure formation during thermomechanical treatment, including from moderate to intense cold plastic deformation,” FMM, 110, No. 3, 305–320 (2010).
18.
Zurück zum Zitat S. M. Dubinskiy, S. D. Prokoshkin, V. Brailovski, et al., “Structure formation during thermomechanical processing of Ti–Nb–Zr(Ta) alloys and manifestation of the shape-memory effect,” Phys. Metals and Metallography, 112, No. 5, 529–542 (2011). S. M. Dubinskiy, S. D. Prokoshkin, V. Brailovski, et al., “Structure formation during thermomechanical processing of Ti–Nb–Zr(Ta) alloys and manifestation of the shape-memory effect,” Phys. Metals and Metallography, 112, No. 5, 529–542 (2011).
19.
Zurück zum Zitat V. Demers, V. Brailovski, S. Prokoshkin, and K. Inaekyan, “Thermomechanical fatigue of nanostructured Ti–Ni shape memory alloys,” Mater. Sci. Eng. A, 513/514, 185–196 (2009).CrossRef V. Demers, V. Brailovski, S. Prokoshkin, and K. Inaekyan, “Thermomechanical fatigue of nanostructured Ti–Ni shape memory alloys,” Mater. Sci. Eng. A, 513/514, 185–196 (2009).CrossRef
20.
Zurück zum Zitat V. Brailovski, S. Prokoshkin, K. Inaekyan, and V. Demers, “Functional properties of nanocrystalline, submicrocrystalline and polygonized Ti–Ni alloys processed by cold rolling and post-deformation annealing,” J. Alloys and Compounds, 509, No. 5, 2066–2075 (2011).CrossRef V. Brailovski, S. Prokoshkin, K. Inaekyan, and V. Demers, “Functional properties of nanocrystalline, submicrocrystalline and polygonized Ti–Ni alloys processed by cold rolling and post-deformation annealing,” J. Alloys and Compounds, 509, No. 5, 2066–2075 (2011).CrossRef
21.
Zurück zum Zitat V. Brailovski, S. Prokoshkin, K. Inaekyan, et al., “Mechanical properties of thermomechanically processed metastable beta Ti–Nb–Zr alloys for biomedical applications,” Mat. Sci. Forum, 706–709, 455–460 (2012).CrossRef V. Brailovski, S. Prokoshkin, K. Inaekyan, et al., “Mechanical properties of thermomechanically processed metastable beta Ti–Nb–Zr alloys for biomedical applications,” Mat. Sci. Forum, 706–709, 455–460 (2012).CrossRef
22.
Zurück zum Zitat D. V. Shtansky, N. A. Glushankova, A. N. Sheveiko, et al., “Design, characterization and testing of TiC-based multicomponent coatings for load-bearing biomedical applications,” Biomaterials, 26, 2909–2924 (2005).CrossRef D. V. Shtansky, N. A. Glushankova, A. N. Sheveiko, et al., “Design, characterization and testing of TiC-based multicomponent coatings for load-bearing biomedical applications,” Biomaterials, 26, 2909–2924 (2005).CrossRef
23.
Zurück zum Zitat D. A. Shtansky, I. A. Bashkov, E. A. Levashov, et al., “Multifunctional nanostructured coatings for implants operating under load,” Dokl. RAN, 44, No. 2, 1–4 (2005). D. A. Shtansky, I. A. Bashkov, E. A. Levashov, et al., “Multifunctional nanostructured coatings for implants operating under load,” Dokl. RAN, 44, No. 2, 1–4 (2005).
24.
Zurück zum Zitat D. V. Shtansky, N. A. Gloushankova, I. A. Bashkova, et al., “Multifunctional biocompatible nanostructured coatings for load-bearing implants,” Surf. Coat. Technol., 201, 4111–4118 (2006).CrossRef D. V. Shtansky, N. A. Gloushankova, I. A. Bashkova, et al., “Multifunctional biocompatible nanostructured coatings for load-bearing implants,” Surf. Coat. Technol., 201, 4111–4118 (2006).CrossRef
25.
Zurück zum Zitat E. A. Levashov, Yu. S. Pogozhev, V. V. Kurbatkina, et al., Advances in Ceramics – Synthesis and Characterization, Processing and Specific Application, edited by C. Sikalidis, INTECH, ISBN 978-953-307-505-1 (2011). E. A. Levashov, Yu. S. Pogozhev, V. V. Kurbatkina, et al., Advances in Ceramics – Synthesis and Characterization, Processing and Specific Application, edited by C. Sikalidis, INTECH, ISBN 978-953-307-505-1 (2011).
26.
Zurück zum Zitat E. A. Levashov, A. S. Rogachev, V. V. Kurbatkina, et al., Promising Materials and Technology for Self-Propagating High-Temperature Synthesis: Teaching Aid [in Russian] ID MISiS, Moscow (2011). E. A. Levashov, A. S. Rogachev, V. V. Kurbatkina, et al., Promising Materials and Technology for Self-Propagating High-Temperature Synthesis: Teaching Aid [in Russian] ID MISiS, Moscow (2011).
27.
Zurück zum Zitat M. I. Petrzhik and E. A. Levashov, “Contemporary methods for studying functional surfaces of promising materials under mechanical contact conditions,” Kristallografiya, 52, No. 6, 1002–1010 (2007). M. I. Petrzhik and E. A. Levashov, “Contemporary methods for studying functional surfaces of promising materials under mechanical contact conditions,” Kristallografiya, 52, No. 6, 1002–1010 (2007).
28.
Zurück zum Zitat E. A. Levashov, D. V. Shtansky, F. V. Kiryukhantsev-Korneev, et al., “Multifunctional nanostructured coatings: preparation, structure, and provision of mechanical and tribological property measurement unification,” Deform. Razrushenie, No. 11, 19–35 (2009). E. A. Levashov, D. V. Shtansky, F. V. Kiryukhantsev-Korneev, et al., “Multifunctional nanostructured coatings: preparation, structure, and provision of mechanical and tribological property measurement unification,” Deform. Razrushenie, No. 11, 19–35 (2009).
29.
Zurück zum Zitat M. I. Petrzhik, M. R. Filonov, K. A. Pechorkin, et al., “Wear resistance and mechanical properties of alloys for medical purposes,” Izv. Vyssh. Uchebn. Zaved., Tsvet. Met., No. 6, 62–69 (2005). M. I. Petrzhik, M. R. Filonov, K. A. Pechorkin, et al., “Wear resistance and mechanical properties of alloys for medical purposes,” Izv. Vyssh. Uchebn. Zaved., Tsvet. Met., No. 6, 62–69 (2005).
30.
Zurück zum Zitat W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., No. 7, 1564 (1992). W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., No. 7, 1564 (1992).
31.
Zurück zum Zitat S. D. Prokoshkin, V. V. Stolyarov, A. V. Korotitsky, et al., “Study of the effect of electric pulse action parameters on structure and functional properties of Ti–Ni alloy with shape memory,” FMM, 108, No. 6, 649–656 (2009). S. D. Prokoshkin, V. V. Stolyarov, A. V. Korotitsky, et al., “Study of the effect of electric pulse action parameters on structure and functional properties of Ti–Ni alloy with shape memory,” FMM, 108, No. 6, 649–656 (2009).
32.
Zurück zum Zitat S. Prokoshkin, V. Brailovski, K. Inaekyan, et al., “A comparative study of structure formation in thermomechanically treated Ti–Ni and Ti–Nb–(Zr, Ta) SMA,” Mat. Sci. Forum, 706–709, 1931–1936 (2012).CrossRef S. Prokoshkin, V. Brailovski, K. Inaekyan, et al., “A comparative study of structure formation in thermomechanically treated Ti–Ni and Ti–Nb–(Zr, Ta) SMA,” Mat. Sci. Forum, 706–709, 1931–1936 (2012).CrossRef
33.
Zurück zum Zitat B. H. Lohse and A. Calka, “ Raman spectroscopy sheds new light on TiC formation during the controlled milling of titanium and carbon,” J. Alloy. Compd., 434–435, 405 (2007).CrossRef B. H. Lohse and A. Calka, “ Raman spectroscopy sheds new light on TiC formation during the controlled milling of titanium and carbon,” J. Alloy. Compd., 434–435, 405 (2007).CrossRef
34.
Zurück zum Zitat Yu. S. Zhukova, M. I. Petrzhik, and S. D. Prokoshkin, “Evaluation of the crystallographic strain reserve with reverse martensitic β – α″ transformation in titanium alloys with shape memory effect,” Metally, No. 6, 77–84 (2010). Yu. S. Zhukova, M. I. Petrzhik, and S. D. Prokoshkin, “Evaluation of the crystallographic strain reserve with reverse martensitic β – α″ transformation in titanium alloys with shape memory effect,” Metally, No. 6, 77–84 (2010).
35.
Zurück zum Zitat S. D. Prokoshkin, A. V. Korotitskiy, V. Brailovski, et al., “Crystal lattice of martensite and the reserve of recoverable strain of thermally and thermomechanically treated Ti–Ni shape memory alloys,” Phys. Met. Metall., 112, No. 2, 170–187 (2011).CrossRef S. D. Prokoshkin, A. V. Korotitskiy, V. Brailovski, et al., “Crystal lattice of martensite and the reserve of recoverable strain of thermally and thermomechanically treated Ti–Ni shape memory alloys,” Phys. Met. Metall., 112, No. 2, 170–187 (2011).CrossRef
36.
Zurück zum Zitat R. A. Andrievski and G. V. Kalinnikov, “Physical-mechanical and physicochemical properties of thin nanostructured boride/nitride films,” Surf. Coat. Technol., 142–144, 573–581 (2001).CrossRef R. A. Andrievski and G. V. Kalinnikov, “Physical-mechanical and physicochemical properties of thin nanostructured boride/nitride films,” Surf. Coat. Technol., 142–144, 573–581 (2001).CrossRef
37.
Zurück zum Zitat D. V. Shtansky, S. A. Kulinich, E. A. Levashov, et al., “Localized deformation of multicomponent thin films,” Thin Solid Films, 420–421, 330–337 (2002).CrossRef D. V. Shtansky, S. A. Kulinich, E. A. Levashov, et al., “Localized deformation of multicomponent thin films,” Thin Solid Films, 420–421, 330–337 (2002).CrossRef
Metadaten
Titel
Structure and mechanical behavior during indentation of biocompatible nanostructured titanium alloys and coatings
verfasst von
E. A. Levashov
M. I. Petrzhik
F. V. Kiryukhantsev-Korneev
D. V. Shtansky
S. D. Prokoshkin
D. V. Gunderov
A. N. Sheveiko
A. V. Korotitsky
R. Z. Valiev
Publikationsdatum
01.09.2012
Verlag
Springer US
Erschienen in
Metallurgist / Ausgabe 5-6/2012
Print ISSN: 0026-0894
Elektronische ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-012-9589-5

Weitere Artikel der Ausgabe 5-6/2012

Metallurgist 5-6/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.