Skip to main content
Top
Published in: Cellulose 14/2021

28-07-2021 | Original Research

Structure and properties of flax vs. lyocell fiber-reinforced polylactide stereocomplex composites

Authors: Huihui Zhang, Qiao Li, Kevin J. Edgar, Gesheng Yang, Huili Shao

Published in: Cellulose | Issue 14/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A commonly used natural cellulose fiber (flax) and a regenerated cellulose fiber (Lyocell) were used at 20 wt% to reinforce polylactide stereocomplex (sc-PLA) composites. Composites were prepared by melt compounding cellulose fibers and an equivalent proportion of PLLA/PDLA, followed by injection molding. The structures and properties of these two kinds of cellulose fiber/sc-PLA composites were compared and evaluated. The results showed that the total crystallinity and stereocomplex crystallite content of composites could be increased by reinforcing with cellulose fibers, and Lyocell fibers were more effective in accelerating crystallinity and the formation of stereocomplex crystallites than flax fibers. Mechanical properties of Lyocell fibers were much poorer than those of flax fibers, and the interfacial adhesion values of Lyocell/sc-PLA composites were inferior to those of flax/sc-PLA composites. Lyocell/sc-PLA composites showed higher impact strength and similar tensile strength vs. flax/sc-PLA composites, but the Young’s modulus values of Lyocell/sc-PLA composites were lower than those of flax/sc-PLA composites. The Vicat softening temperatures of both flax/sc-PLA and Lyocell/sc-PLA composites were increased to nearly 100 °C higher than that of PLLA. Lyocell/sc-PLA composites showed the highest Vicat softening temperature of ~ 170 °C.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Arao Y, Fujiura T, Itani S, Tanaka T (2015) Strength improvement in injection-molded jute-fiber-reinforced polylactide green-composites. Compos Part B-Eng 68:200–206CrossRef Arao Y, Fujiura T, Itani S, Tanaka T (2015) Strength improvement in injection-molded jute-fiber-reinforced polylactide green-composites. Compos Part B-Eng 68:200–206CrossRef
go back to reference Aydin M, Tozlu H, Kemaloglu S, Aytac A, Ozkoc G (2011) Effects of alkali treatment on the properties of short flax fiber–poly(lactic acid) eco-composites. J Polym Environ 19:11–17CrossRef Aydin M, Tozlu H, Kemaloglu S, Aytac A, Ozkoc G (2011) Effects of alkali treatment on the properties of short flax fiber–poly(lactic acid) eco-composites. J Polym Environ 19:11–17CrossRef
go back to reference Bax B, Müssig J (2008) Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol 68:1601–1607CrossRef Bax B, Müssig J (2008) Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol 68:1601–1607CrossRef
go back to reference Biagiotti J, Puglia D, Torre L, Kenny LT, Arbelaiz A, Cantero G, Marieta C, Llano-Ponte R, Mondragon I (2004) A systematic investigation on the influence of the chemical treatment of natural fibers on the properties of their polymer matrix composites. Polym Composite 25:470–479CrossRef Biagiotti J, Puglia D, Torre L, Kenny LT, Arbelaiz A, Cantero G, Marieta C, Llano-Ponte R, Mondragon I (2004) A systematic investigation on the influence of the chemical treatment of natural fibers on the properties of their polymer matrix composites. Polym Composite 25:470–479CrossRef
go back to reference Brizzolara D, Cantow HJ, Diederichs K, Keller E, Domb AJ (1996) Mechanism of the stereocomplex formation between enantiomeric poly(lactide)s. Macromolecules 29:191–197CrossRef Brizzolara D, Cantow HJ, Diederichs K, Keller E, Domb AJ (1996) Mechanism of the stereocomplex formation between enantiomeric poly(lactide)s. Macromolecules 29:191–197CrossRef
go back to reference Brochu S, Prud’homme RE, Barakat I, Jérôme R, (1995) Stereocomplexation and morphology of polylactides macromolecules. Macromolecules 28:5230–5239CrossRef Brochu S, Prud’homme RE, Barakat I, Jérôme R, (1995) Stereocomplexation and morphology of polylactides macromolecules. Macromolecules 28:5230–5239CrossRef
go back to reference Ganster J, Fink H-P (2006) Novel cellulose fibre reinforced thermoplastic materials. Cellulose 13:271–280CrossRef Ganster J, Fink H-P (2006) Novel cellulose fibre reinforced thermoplastic materials. Cellulose 13:271–280CrossRef
go back to reference Ghosh S, Viana JC, Reis RL, Mano JF (2007) Effect of processing conditions on morphology and mechanical properties of injection-molded poly(l-lactic acid). Polym Eng Sci 47:1141–1147CrossRef Ghosh S, Viana JC, Reis RL, Mano JF (2007) Effect of processing conditions on morphology and mechanical properties of injection-molded poly(l-lactic acid). Polym Eng Sci 47:1141–1147CrossRef
go back to reference Graupner N (2008) Application of lignin as natural adhesion promoter in cotton fibre-reinforced poly(lactic acid) (PLA) composites. J Mater Sci 43:5222–5229CrossRef Graupner N (2008) Application of lignin as natural adhesion promoter in cotton fibre-reinforced poly(lactic acid) (PLA) composites. J Mater Sci 43:5222–5229CrossRef
go back to reference Graupner N, Herrmann AS, Müssig J (2009) Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: an overview about mechanical characteristics and application areas. Compos Part A-Appl S 40:810–821CrossRef Graupner N, Herrmann AS, Müssig J (2009) Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: an overview about mechanical characteristics and application areas. Compos Part A-Appl S 40:810–821CrossRef
go back to reference Graupner N, Rößler J, Ziegmann G, Müssig J (2014) Fibre/matrix adhesion of cellulose fibres in PLA, PP and MAPP: a critical review of pull-out test, microbond test and single fibre fragmentation test results. Compos Part A-Appl S 63:133–148CrossRef Graupner N, Rößler J, Ziegmann G, Müssig J (2014) Fibre/matrix adhesion of cellulose fibres in PLA, PP and MAPP: a critical review of pull-out test, microbond test and single fibre fragmentation test results. Compos Part A-Appl S 63:133–148CrossRef
go back to reference Hu R, Lim JK (2007) Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites. J Compos Mater 41:1655–1669CrossRef Hu R, Lim JK (2007) Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites. J Compos Mater 41:1655–1669CrossRef
go back to reference Huda MS, Drzal LT, Misra M, Mohanty AK (2006) Wood-fiber-reinforced poly(lactic acid) composites: evaluation of the physicomechanical and morphological properties. J Appl Polym Sci 102:4856–4869CrossRef Huda MS, Drzal LT, Misra M, Mohanty AK (2006) Wood-fiber-reinforced poly(lactic acid) composites: evaluation of the physicomechanical and morphological properties. J Appl Polym Sci 102:4856–4869CrossRef
go back to reference Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Compos Sci Technol 68:424–432CrossRef Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Compos Sci Technol 68:424–432CrossRef
go back to reference Ikada Y, Jamshidi K, Tsuji H, Hyon SH (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20:904–906CrossRef Ikada Y, Jamshidi K, Tsuji H, Hyon SH (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20:904–906CrossRef
go back to reference Jiang X, Bai Y, Chen X, Liu W (2020) A review on raw materials, commercial production and properties of lyocell fiber. J Bioresour Bioprod 5:17–27CrossRef Jiang X, Bai Y, Chen X, Liu W (2020) A review on raw materials, commercial production and properties of lyocell fiber. J Bioresour Bioprod 5:17–27CrossRef
go back to reference Jin F-L, Hu R-R, Park S-J (2019) Improvement of thermal behaviors of biodegradable poly(lactic acid) polymer: a review. Compos Part B-Eng 164:287–296CrossRef Jin F-L, Hu R-R, Park S-J (2019) Improvement of thermal behaviors of biodegradable poly(lactic acid) polymer: a review. Compos Part B-Eng 164:287–296CrossRef
go back to reference Li Y, Li Q, Yang G, Ming R, Yu M, Zhang H, Shao H (2018) Evaluation of thermal resistance and mechanical properties of injected molded stereocomplex of poly(l-lactic acid) and poly(d-lactic acid) with various molecular weights. Adv Polym Tech 37:1674–1681CrossRef Li Y, Li Q, Yang G, Ming R, Yu M, Zhang H, Shao H (2018) Evaluation of thermal resistance and mechanical properties of injected molded stereocomplex of poly(l-lactic acid) and poly(d-lactic acid) with various molecular weights. Adv Polym Tech 37:1674–1681CrossRef
go back to reference Liu H, Zhang J (2011) Research progress in toughening modification of poly(lactic acid). J Polym Sci Pol Phys 49:1051–1083CrossRef Liu H, Zhang J (2011) Research progress in toughening modification of poly(lactic acid). J Polym Sci Pol Phys 49:1051–1083CrossRef
go back to reference Ma H, Joo CW (2011) Structure and mechanical properties of jute-polylactic acid biodegradable composites. J Compos Mater 45:1451–1460CrossRef Ma H, Joo CW (2011) Structure and mechanical properties of jute-polylactic acid biodegradable composites. J Compos Mater 45:1451–1460CrossRef
go back to reference Masirek R, Kulinski Z, Chionna D, Piorkowska E, Pracella M (2007) Composites of poly(L-actide) with hemp fibers: morphology and thermal and mechanical properties. J Appl Polym Sci 105:255–268CrossRef Masirek R, Kulinski Z, Chionna D, Piorkowska E, Pracella M (2007) Composites of poly(L-actide) with hemp fibers: morphology and thermal and mechanical properties. J Appl Polym Sci 105:255–268CrossRef
go back to reference Mathew AP, Oksman K, Sain M (2006) The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. J Appl Polym Sci 101:300–310CrossRef Mathew AP, Oksman K, Sain M (2006) The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. J Appl Polym Sci 101:300–310CrossRef
go back to reference Ming R, Yang G, Li Y, Wang R, Zhang H, Shao H (2017) Flax fiber-reinforced polylactide stereocomplex composites with enhanced heat resistance and mechanical properties. Polym Composite 38:472–478CrossRef Ming R, Yang G, Li Y, Wang R, Zhang H, Shao H (2017) Flax fiber-reinforced polylactide stereocomplex composites with enhanced heat resistance and mechanical properties. Polym Composite 38:472–478CrossRef
go back to reference Mokhena TC, Sefadi JS, Sadiku ER, John MJ, Mochane MJ, Mtibe A (2018) Thermoplastic processing of PLA/cellulose nanomaterials composites. Polymers 10:1363PubMedCentralCrossRef Mokhena TC, Sefadi JS, Sadiku ER, John MJ, Mochane MJ, Mtibe A (2018) Thermoplastic processing of PLA/cellulose nanomaterials composites. Polymers 10:1363PubMedCentralCrossRef
go back to reference Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84:2222–2234CrossRef Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84:2222–2234CrossRef
go back to reference Nassiopoulos E, Njuguna J (2015) Thermo-mechanical performance of poly(lactic acid)/flax fibre-reinforced biocomposites. Mater Design 66:473–485CrossRef Nassiopoulos E, Njuguna J (2015) Thermo-mechanical performance of poly(lactic acid)/flax fibre-reinforced biocomposites. Mater Design 66:473–485CrossRef
go back to reference Ochi S (2008) Mechanical properties of kenaf fibers and kenaf/PLA composites. Mech Mater 40:446–452CrossRef Ochi S (2008) Mechanical properties of kenaf fibers and kenaf/PLA composites. Mech Mater 40:446–452CrossRef
go back to reference Orue A, Jauregi A, Peña-Rodriguez C, Labidi J, Eceiza A, Arbelaiz A (2015) The effect of surface modifications on sisal fiber properties and sisal/poly (lactic acid) interface adhesion. Compos Part B-Eng 73:132–138CrossRef Orue A, Jauregi A, Peña-Rodriguez C, Labidi J, Eceiza A, Arbelaiz A (2015) The effect of surface modifications on sisal fiber properties and sisal/poly (lactic acid) interface adhesion. Compos Part B-Eng 73:132–138CrossRef
go back to reference Río JCd, Gutiérrez A, Rodríguez IM, Ibarra D, Martínez áT, (2007) Composition of non-woody plant lignins and cinnamic acids by Py-GC/MS, Py/TMAH and FT-IR. J Anal Appl Pyrol 79:39–46CrossRef Río JCd, Gutiérrez A, Rodríguez IM, Ibarra D, Martínez áT, (2007) Composition of non-woody plant lignins and cinnamic acids by Py-GC/MS, Py/TMAH and FT-IR. J Anal Appl Pyrol 79:39–46CrossRef
go back to reference Sarasua JR, Arraiza ALp, Balerdi P, Maiza I, (2005) Crystallinity and mechanical properties of optically pure polylactides and their blends. Polym Eng Sci 45:745–753CrossRef Sarasua JR, Arraiza ALp, Balerdi P, Maiza I, (2005) Crystallinity and mechanical properties of optically pure polylactides and their blends. Polym Eng Sci 45:745–753CrossRef
go back to reference Sawpan MA, Pickering KL, Fernyhough A (2011) Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites. Compos Part A-Appl S 42:310–319CrossRef Sawpan MA, Pickering KL, Fernyhough A (2011) Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites. Compos Part A-Appl S 42:310–319CrossRef
go back to reference Schmidt SC, Hillmyer MA (2001) Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide. J Polym Sci Pol Phys 39:300–313CrossRef Schmidt SC, Hillmyer MA (2001) Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide. J Polym Sci Pol Phys 39:300–313CrossRef
go back to reference Sgriccia N, Hawley MC, Misra M (2008) Characterization of natural fiber surfaces and natural fiber composites. Compos Part A-Appl S 39:1632–1637CrossRef Sgriccia N, Hawley MC, Misra M (2008) Characterization of natural fiber surfaces and natural fiber composites. Compos Part A-Appl S 39:1632–1637CrossRef
go back to reference Srithep Y, Pholharn D, Turng L-S, Veang-in O (2015) Injection molding and characterization of polylactide stereocomplex. Polym Degrad Stabil 120:290–299CrossRef Srithep Y, Pholharn D, Turng L-S, Veang-in O (2015) Injection molding and characterization of polylactide stereocomplex. Polym Degrad Stabil 120:290–299CrossRef
go back to reference Tokoro R, Vu DM, Okubo K, Tanaka T, Fujii T, Fujiura T (2007) How to improve mechanical properties of polylactic acid with bamboo fibers. J Mater Sci 43:775–787CrossRef Tokoro R, Vu DM, Okubo K, Tanaka T, Fujii T, Fujiura T (2007) How to improve mechanical properties of polylactic acid with bamboo fibers. J Mater Sci 43:775–787CrossRef
go back to reference Tsuji H, Ikada Y (1993) Stereocomplex formation between enantiomeric poly(lactic acids). 9 Stereocomplexation from the Melt. Macromolecules 26:6918–6926CrossRef Tsuji H, Ikada Y (1993) Stereocomplex formation between enantiomeric poly(lactic acids). 9 Stereocomplexation from the Melt. Macromolecules 26:6918–6926CrossRef
go back to reference Tsuji H, Ikada Y (1999) Stereocomplex formation between enantiomeric poly(lactic acid)s. XI. mechanical properties and morphology of solution-cast films. Polymer 40:6699–6708CrossRef Tsuji H, Ikada Y (1999) Stereocomplex formation between enantiomeric poly(lactic acid)s. XI. mechanical properties and morphology of solution-cast films. Polymer 40:6699–6708CrossRef
go back to reference Xu H, Tang S, Chen J, Yin P, Pu W, Lu Y (2012) Thermal and phase-separation behavior of injection-molded poly(l-lactic acid)/poly(d-lactic acid) blends with moderate optical purity. Polym Bull 68:1135–1151CrossRef Xu H, Tang S, Chen J, Yin P, Pu W, Lu Y (2012) Thermal and phase-separation behavior of injection-molded poly(l-lactic acid)/poly(d-lactic acid) blends with moderate optical purity. Polym Bull 68:1135–1151CrossRef
go back to reference Yang H, Rong Y, Chen H, Dong HL, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788CrossRef Yang H, Rong Y, Chen H, Dong HL, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788CrossRef
go back to reference Yu M, Zhang H, Liu Z, Ge Z, Kong F, Shao H, Hu X (2019) Effects of fiber dimension and its distribution on the properties of Lyocell and ramie fibers reinforced polylactide composites. Fiber Polym 20:1726–1732CrossRef Yu M, Zhang H, Liu Z, Ge Z, Kong F, Shao H, Hu X (2019) Effects of fiber dimension and its distribution on the properties of Lyocell and ramie fibers reinforced polylactide composites. Fiber Polym 20:1726–1732CrossRef
go back to reference Zhang J, Sato H, Tsuji H, Noda I, Ozaki Y (2005) Differences in the CH3O=C interactions among poly(L-lactide), poly(L-lactide)/poly(D-lactide) stereocomplex, and poly(3-hydroxybutyrate) studied by infrared spectroscopy. J Mol Struct 735–736:249–257CrossRef Zhang J, Sato H, Tsuji H, Noda I, Ozaki Y (2005) Differences in the CH3O=C interactions among poly(L-lactide), poly(L-lactide)/poly(D-lactide) stereocomplex, and poly(3-hydroxybutyrate) studied by infrared spectroscopy. J Mol Struct 735–736:249–257CrossRef
go back to reference Zhang H, Ming R, Yang G, Li Y, Li Q, Shao H (2015) Influence of alkali treatment on flax fiber for use as reinforcements in polylactide stereocomplex composites. Polym Eng Sci 55:2553–2558CrossRef Zhang H, Ming R, Yang G, Li Y, Li Q, Shao H (2015) Influence of alkali treatment on flax fiber for use as reinforcements in polylactide stereocomplex composites. Polym Eng Sci 55:2553–2558CrossRef
go back to reference Zhang H, Li Y, Yang G, Yu M, Shao H (2020) Effect of interfacial modification on the thermo-mechanical properties of flax reinforced polylactide stereocomplex composites. J Polym Eng 40:403–408CrossRef Zhang H, Li Y, Yang G, Yu M, Shao H (2020) Effect of interfacial modification on the thermo-mechanical properties of flax reinforced polylactide stereocomplex composites. J Polym Eng 40:403–408CrossRef
Metadata
Title
Structure and properties of flax vs. lyocell fiber-reinforced polylactide stereocomplex composites
Authors
Huihui Zhang
Qiao Li
Kevin J. Edgar
Gesheng Yang
Huili Shao
Publication date
28-07-2021
Publisher
Springer Netherlands
Published in
Cellulose / Issue 14/2021
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-021-04105-0

Other articles of this Issue 14/2021

Cellulose 14/2021 Go to the issue