Skip to main content
Top
Published in: Microsystem Technologies 2/2012

01-02-2012 | Technical Paper

Structure-induced spreading of liquid in micropillar arrays

Authors: Craig Priest, Pontus S. H. Forsberg, Rossen Sedev, John Ralston

Published in: Microsystem Technologies | Issue 2/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Contact angle measurements on micropillar arrays were used to determine the conditions that trigger spontaneous penetration of liquids into surface structures. Square micropillars (20 μm) were fabricated in photoresist or quartz and modified chemically to alter the inherent contact angle (i.e., for a flat surface). The lattice spacing of the pillar array and pillar height was also adjusted to investigate the influence of geometry on the wetting behavior. A critical inherent contact angle, θ 0, was observed below 90°, at which enhanced hydrophobicity switches to enhanced hydrophilicity. This differs from Wenzel’s prediction of θ = 90°. The transition is not a Cassie-Wenzel state transition. Above the critical angle, the static advancing contact angle increased with pillar coverage due to pinning. Below the critical angle, liquid spreads ahead of the droplet between the pillars to form a stable film. An example of chemical detection and the implications for multiphase microfluidics is discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82:364CrossRef Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82:364CrossRef
go back to reference Aota A, Nonaka M, Hibara A, Kitamori T (2006) Countercurrent laminar microflow for highly efficient solvent extraction. Angew Chem Int Ed 45:1CrossRef Aota A, Nonaka M, Hibara A, Kitamori T (2006) Countercurrent laminar microflow for highly efficient solvent extraction. Angew Chem Int Ed 45:1CrossRef
go back to reference Bico J, Thiele U, Quéré D (2002) Wetting of textured surfaces. Colloids Surf A 206:41–46CrossRef Bico J, Thiele U, Quéré D (2002) Wetting of textured surfaces. Colloids Surf A 206:41–46CrossRef
go back to reference Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:547–551CrossRef Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:547–551CrossRef
go back to reference Chabert M, Viovy JL (2008) Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells. Proc Natl Acad Sci USA 105:3191CrossRef Chabert M, Viovy JL (2008) Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells. Proc Natl Acad Sci USA 105:3191CrossRef
go back to reference Cheng D, Jiang H (2009) A debubbler for microfluidics utilizing air-liquid interfaces. Appl Phys Lett 95:214103CrossRef Cheng D, Jiang H (2009) A debubbler for microfluidics utilizing air-liquid interfaces. Appl Phys Lett 95:214103CrossRef
go back to reference Concus P, Finn R (1969) On the behaviour of a capillary surface in a wedge. Proc Natl Acad Sci USA 63:292MATHCrossRef Concus P, Finn R (1969) On the behaviour of a capillary surface in a wedge. Proc Natl Acad Sci USA 63:292MATHCrossRef
go back to reference Dorrer C, Rühe J (2007) Drops on microstructured surfaces coated with hydrophilic polymers: Wenzel’s model and beyond. Langmuir 24:1959CrossRef Dorrer C, Rühe J (2007) Drops on microstructured surfaces coated with hydrophilic polymers: Wenzel’s model and beyond. Langmuir 24:1959CrossRef
go back to reference Dorrer C, Rühe J (2009) Some thoughts on superhydrophobic wetting. Soft Matter 5(1):51–61CrossRef Dorrer C, Rühe J (2009) Some thoughts on superhydrophobic wetting. Soft Matter 5(1):51–61CrossRef
go back to reference Eick JD, Good RJ, Neumann AW (1975) Thermodynamics of contact angles II: rough solid surfaces. J Colloid Interface Sci 53:235CrossRef Eick JD, Good RJ, Neumann AW (1975) Thermodynamics of contact angles II: rough solid surfaces. J Colloid Interface Sci 53:235CrossRef
go back to reference Evju JK, Howell PB, Locascio LE, Tarlov MJ, Hickman JJ (2004) Atmospheric pressure microplasmas for modifying sealed microfluidic devices. Appl Phys Lett 84:1668CrossRef Evju JK, Howell PB, Locascio LE, Tarlov MJ, Hickman JJ (2004) Atmospheric pressure microplasmas for modifying sealed microfluidic devices. Appl Phys Lett 84:1668CrossRef
go back to reference Feng X, Jiang L (2006) Design and creation of superwetting/antiwetting surfaces. Adv Mater 18(23):3063–3078 (Weinheim, Germany)CrossRef Feng X, Jiang L (2006) Design and creation of superwetting/antiwetting surfaces. Adv Mater 18(23):3063–3078 (Weinheim, Germany)CrossRef
go back to reference Forsberg PSH, Priest C, Brinkmann M, Sedev R, Ralston J (2010) Contact line pinning on microstructured surfaces for liquids in the Wenzel state. Langmuir 26:860CrossRef Forsberg PSH, Priest C, Brinkmann M, Sedev R, Ralston J (2010) Contact line pinning on microstructured surfaces for liquids in the Wenzel state. Langmuir 26:860CrossRef
go back to reference Herminghaus S, Brinkmann M, Seemann R (2008) Wetting and dewetting of complex surface geometries. Annu Rev Mater Res 38:101CrossRef Herminghaus S, Brinkmann M, Seemann R (2008) Wetting and dewetting of complex surface geometries. Annu Rev Mater Res 38:101CrossRef
go back to reference Huh C, Mason SG (1977) Effects of surface roughness on wetting (Theoretical). J Colloid Interface Sci 60:11CrossRef Huh C, Mason SG (1977) Effects of surface roughness on wetting (Theoretical). J Colloid Interface Sci 60:11CrossRef
go back to reference Johnson REJ, Dettre RH (1964) Contact angle hysteresis I: study of an idealized rough surface. Adv Chem Ser 43:112–135CrossRef Johnson REJ, Dettre RH (1964) Contact angle hysteresis I: study of an idealized rough surface. Adv Chem Ser 43:112–135CrossRef
go back to reference Kenis PJA, Ismagilov RF, Whitesides GM (1999) Microfabrication inside capillaries using multiphase laminar flow patterning. Science 285:83CrossRef Kenis PJA, Ismagilov RF, Whitesides GM (1999) Microfabrication inside capillaries using multiphase laminar flow patterning. Science 285:83CrossRef
go back to reference Klages C-P, Berger C, Eichler M, Thomas M (2007) Microplasma-based treatment of inner surfaces in microfluidic devices. Contrib Plasma Phys 47(1–2):49CrossRef Klages C-P, Berger C, Eichler M, Thomas M (2007) Microplasma-based treatment of inner surfaces in microfluidic devices. Contrib Plasma Phys 47(1–2):49CrossRef
go back to reference Kohli R, Mittal KL (2007) Developments in surface contamination and cleaning: fundamentals and applied aspects. William Andrew, New York Kohli R, Mittal KL (2007) Developments in surface contamination and cleaning: fundamentals and applied aspects. William Andrew, New York
go back to reference Kwon KW, Choi SS, Lee SH, Kim B, Lee SN, Park MC, Kim P, Hwang SY, Suh KY (2007) Label-free, microfluidic separation and enrichment of human breast cancer cells by adhesion difference. Lab Chip 7:1461CrossRef Kwon KW, Choi SS, Lee SH, Kim B, Lee SN, Park MC, Kim P, Hwang SY, Suh KY (2007) Label-free, microfluidic separation and enrichment of human breast cancer cells by adhesion difference. Lab Chip 7:1461CrossRef
go back to reference Marmur A, Bittoun E (2009) When Wenzel and Cassie are right: reconciling local and global considerations. Langmuir 25(3):1277–1281CrossRef Marmur A, Bittoun E (2009) When Wenzel and Cassie are right: reconciling local and global considerations. Langmuir 25(3):1277–1281CrossRef
go back to reference Minagawa T, Tokeshi M, Kitamori T (2001) Integration of a wet analysis system on a glass chip: determination of Co(II) as 2-nitroso-1-naphthol chelates by solvent extraction and thermal lens microscopy. Lab Chip 1:72CrossRef Minagawa T, Tokeshi M, Kitamori T (2001) Integration of a wet analysis system on a glass chip: determination of Co(II) as 2-nitroso-1-naphthol chelates by solvent extraction and thermal lens microscopy. Lab Chip 1:72CrossRef
go back to reference Park JI, Saffari A, Kumar S, Günther A, Kumacheva E (2010) Microfluidic synthesis of polymer and inorganic particulate materials. Annu Rev Mater Res 40:415CrossRef Park JI, Saffari A, Kumar S, Günther A, Kumacheva E (2010) Microfluidic synthesis of polymer and inorganic particulate materials. Annu Rev Mater Res 40:415CrossRef
go back to reference Pease DC (1945) The significance of the contact angle in relation to the solid surface. J Phys Chem 49:107–110CrossRef Pease DC (1945) The significance of the contact angle in relation to the solid surface. J Phys Chem 49:107–110CrossRef
go back to reference Priest C, Herminghaus S, Seemann R (2006) Generation of monodisperse gel emulsions in a microfluidic device. Appl Phys Lett 88:024106CrossRef Priest C, Herminghaus S, Seemann R (2006) Generation of monodisperse gel emulsions in a microfluidic device. Appl Phys Lett 88:024106CrossRef
go back to reference Priest C, Quinn A, Postma A, Zelikin AN, Ralston J, Caruso F (2008) Microfluidic polymer multilayer adsorption on liquid crystal droplets for microcapsule synthesis. Lab Chip 8:2182CrossRef Priest C, Quinn A, Postma A, Zelikin AN, Ralston J, Caruso F (2008) Microfluidic polymer multilayer adsorption on liquid crystal droplets for microcapsule synthesis. Lab Chip 8:2182CrossRef
go back to reference Priest C, Gruner PJ, Szili EJ, Al-Bataineh SA, Bradley JW, Ralston J, Steele DA, Short RD (2011) Microplasma patterning of bonded microchannels using high-precision “injected” electrodes. Lab Chip 11:541–544CrossRef Priest C, Gruner PJ, Szili EJ, Al-Bataineh SA, Bradley JW, Ralston J, Steele DA, Short RD (2011) Microplasma patterning of bonded microchannels using high-precision “injected” electrodes. Lab Chip 11:541–544CrossRef
go back to reference Roach P, Shirtcliffe NJ, Newton MI (2008) Progress in superhydrophobic surface development. Soft Matter 4(2):224–240CrossRef Roach P, Shirtcliffe NJ, Newton MI (2008) Progress in superhydrophobic surface development. Soft Matter 4(2):224–240CrossRef
go back to reference Saha AA, Mitra SK, Tweedie M, Roy S, McLaughlin J (2009) Experimental and numerical investigation of capillary flow in SU8 and PDMS microchannels with integrated pillars. Microfluid Nanofluid 7:451CrossRef Saha AA, Mitra SK, Tweedie M, Roy S, McLaughlin J (2009) Experimental and numerical investigation of capillary flow in SU8 and PDMS microchannels with integrated pillars. Microfluid Nanofluid 7:451CrossRef
go back to reference Salim M, Wright PC, McArthur SL (2009) Studies of electroosmotic flow and the effects of protein adsorption in plasma-polymerized microchannel surfaces. Electrophoresis 30:1877CrossRef Salim M, Wright PC, McArthur SL (2009) Studies of electroosmotic flow and the effects of protein adsorption in plasma-polymerized microchannel surfaces. Electrophoresis 30:1877CrossRef
go back to reference Sugiura S, Nakajima M, Seki M (2002) Prediction of droplet diameter for microchannel emulsification. Langmuir 18:3854CrossRef Sugiura S, Nakajima M, Seki M (2002) Prediction of droplet diameter for microchannel emulsification. Langmuir 18:3854CrossRef
go back to reference Swain PS, Lipowsky R (1998) Contact angles on heterogeneous surfaces: a new look at Cassie’s and Wenzel’s laws. Langmuir 14(23):6772–6780CrossRef Swain PS, Lipowsky R (1998) Contact angles on heterogeneous surfaces: a new look at Cassie’s and Wenzel’s laws. Langmuir 14(23):6772–6780CrossRef
go back to reference Takei G, Nonogi M, Hibara A, Kitamori T, Kim H-B (2007) Tuning microchannel wettability and fabrication of multiple-step Laplace valves. Lab Chip 7:596CrossRef Takei G, Nonogi M, Hibara A, Kitamori T, Kim H-B (2007) Tuning microchannel wettability and fabrication of multiple-step Laplace valves. Lab Chip 7:596CrossRef
go back to reference Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet Microfluidics. Lab Chip 8:198CrossRef Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet Microfluidics. Lab Chip 8:198CrossRef
go back to reference Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988CrossRef Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988CrossRef
go back to reference Xia F, Jiang L (2008) Bio-inspired, smart, multiscale interfacial materials. Adv Mater 20(15):2842–2858 (Weinheim, Germany)CrossRef Xia F, Jiang L (2008) Bio-inspired, smart, multiscale interfacial materials. Adv Mater 20(15):2842–2858 (Weinheim, Germany)CrossRef
go back to reference Yeh P-Y, Rossi NAA, Kizhakkedathu JN, Chiao M (2010) A silicone-based microfluidic chip grafted with carboxyl functionalized hyperbranched polyglycols for selective protein capture. Microfluid Nanofluid 9:199CrossRef Yeh P-Y, Rossi NAA, Kizhakkedathu JN, Chiao M (2010) A silicone-based microfluidic chip grafted with carboxyl functionalized hyperbranched polyglycols for selective protein capture. Microfluid Nanofluid 9:199CrossRef
go back to reference Young T (1805) An essay on the cohesion of fluids. Phil Trans R Soc London 95(1):65 Young T (1805) An essay on the cohesion of fluids. Phil Trans R Soc London 95(1):65
go back to reference Zhao B, Moore J, Beebe DJ (2001) Surface directed liquid flow inside microchannels. Science 291:1023CrossRef Zhao B, Moore J, Beebe DJ (2001) Surface directed liquid flow inside microchannels. Science 291:1023CrossRef
go back to reference Zhao B, Viernes NOL, Moore JS, Beebe DJ (2002) Control and applications of immiscible liquids in microchannels. J Am Chem Soc 124:5284CrossRef Zhao B, Viernes NOL, Moore JS, Beebe DJ (2002) Control and applications of immiscible liquids in microchannels. J Am Chem Soc 124:5284CrossRef
Metadata
Title
Structure-induced spreading of liquid in micropillar arrays
Authors
Craig Priest
Pontus S. H. Forsberg
Rossen Sedev
John Ralston
Publication date
01-02-2012
Publisher
Springer-Verlag
Published in
Microsystem Technologies / Issue 2/2012
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-011-1341-8

Other articles of this Issue 2/2012

Microsystem Technologies 2/2012 Go to the issue