Skip to main content
Erschienen in: Microsystem Technologies 2/2012

01.02.2012 | Technical Paper

Structure-induced spreading of liquid in micropillar arrays

verfasst von: Craig Priest, Pontus S. H. Forsberg, Rossen Sedev, John Ralston

Erschienen in: Microsystem Technologies | Ausgabe 2/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Contact angle measurements on micropillar arrays were used to determine the conditions that trigger spontaneous penetration of liquids into surface structures. Square micropillars (20 μm) were fabricated in photoresist or quartz and modified chemically to alter the inherent contact angle (i.e., for a flat surface). The lattice spacing of the pillar array and pillar height was also adjusted to investigate the influence of geometry on the wetting behavior. A critical inherent contact angle, θ 0, was observed below 90°, at which enhanced hydrophobicity switches to enhanced hydrophilicity. This differs from Wenzel’s prediction of θ = 90°. The transition is not a Cassie-Wenzel state transition. Above the critical angle, the static advancing contact angle increased with pillar coverage due to pinning. Below the critical angle, liquid spreads ahead of the droplet between the pillars to form a stable film. An example of chemical detection and the implications for multiphase microfluidics is discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82:364CrossRef Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82:364CrossRef
Zurück zum Zitat Aota A, Nonaka M, Hibara A, Kitamori T (2006) Countercurrent laminar microflow for highly efficient solvent extraction. Angew Chem Int Ed 45:1CrossRef Aota A, Nonaka M, Hibara A, Kitamori T (2006) Countercurrent laminar microflow for highly efficient solvent extraction. Angew Chem Int Ed 45:1CrossRef
Zurück zum Zitat Bico J, Thiele U, Quéré D (2002) Wetting of textured surfaces. Colloids Surf A 206:41–46CrossRef Bico J, Thiele U, Quéré D (2002) Wetting of textured surfaces. Colloids Surf A 206:41–46CrossRef
Zurück zum Zitat Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:547–551CrossRef Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:547–551CrossRef
Zurück zum Zitat Chabert M, Viovy JL (2008) Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells. Proc Natl Acad Sci USA 105:3191CrossRef Chabert M, Viovy JL (2008) Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells. Proc Natl Acad Sci USA 105:3191CrossRef
Zurück zum Zitat Cheng D, Jiang H (2009) A debubbler for microfluidics utilizing air-liquid interfaces. Appl Phys Lett 95:214103CrossRef Cheng D, Jiang H (2009) A debubbler for microfluidics utilizing air-liquid interfaces. Appl Phys Lett 95:214103CrossRef
Zurück zum Zitat Concus P, Finn R (1969) On the behaviour of a capillary surface in a wedge. Proc Natl Acad Sci USA 63:292MATHCrossRef Concus P, Finn R (1969) On the behaviour of a capillary surface in a wedge. Proc Natl Acad Sci USA 63:292MATHCrossRef
Zurück zum Zitat Dorrer C, Rühe J (2007) Drops on microstructured surfaces coated with hydrophilic polymers: Wenzel’s model and beyond. Langmuir 24:1959CrossRef Dorrer C, Rühe J (2007) Drops on microstructured surfaces coated with hydrophilic polymers: Wenzel’s model and beyond. Langmuir 24:1959CrossRef
Zurück zum Zitat Dorrer C, Rühe J (2009) Some thoughts on superhydrophobic wetting. Soft Matter 5(1):51–61CrossRef Dorrer C, Rühe J (2009) Some thoughts on superhydrophobic wetting. Soft Matter 5(1):51–61CrossRef
Zurück zum Zitat Eick JD, Good RJ, Neumann AW (1975) Thermodynamics of contact angles II: rough solid surfaces. J Colloid Interface Sci 53:235CrossRef Eick JD, Good RJ, Neumann AW (1975) Thermodynamics of contact angles II: rough solid surfaces. J Colloid Interface Sci 53:235CrossRef
Zurück zum Zitat Evju JK, Howell PB, Locascio LE, Tarlov MJ, Hickman JJ (2004) Atmospheric pressure microplasmas for modifying sealed microfluidic devices. Appl Phys Lett 84:1668CrossRef Evju JK, Howell PB, Locascio LE, Tarlov MJ, Hickman JJ (2004) Atmospheric pressure microplasmas for modifying sealed microfluidic devices. Appl Phys Lett 84:1668CrossRef
Zurück zum Zitat Feng X, Jiang L (2006) Design and creation of superwetting/antiwetting surfaces. Adv Mater 18(23):3063–3078 (Weinheim, Germany)CrossRef Feng X, Jiang L (2006) Design and creation of superwetting/antiwetting surfaces. Adv Mater 18(23):3063–3078 (Weinheim, Germany)CrossRef
Zurück zum Zitat Forsberg PSH, Priest C, Brinkmann M, Sedev R, Ralston J (2010) Contact line pinning on microstructured surfaces for liquids in the Wenzel state. Langmuir 26:860CrossRef Forsberg PSH, Priest C, Brinkmann M, Sedev R, Ralston J (2010) Contact line pinning on microstructured surfaces for liquids in the Wenzel state. Langmuir 26:860CrossRef
Zurück zum Zitat Herminghaus S, Brinkmann M, Seemann R (2008) Wetting and dewetting of complex surface geometries. Annu Rev Mater Res 38:101CrossRef Herminghaus S, Brinkmann M, Seemann R (2008) Wetting and dewetting of complex surface geometries. Annu Rev Mater Res 38:101CrossRef
Zurück zum Zitat Huh C, Mason SG (1977) Effects of surface roughness on wetting (Theoretical). J Colloid Interface Sci 60:11CrossRef Huh C, Mason SG (1977) Effects of surface roughness on wetting (Theoretical). J Colloid Interface Sci 60:11CrossRef
Zurück zum Zitat Johnson REJ, Dettre RH (1964) Contact angle hysteresis I: study of an idealized rough surface. Adv Chem Ser 43:112–135CrossRef Johnson REJ, Dettre RH (1964) Contact angle hysteresis I: study of an idealized rough surface. Adv Chem Ser 43:112–135CrossRef
Zurück zum Zitat Kenis PJA, Ismagilov RF, Whitesides GM (1999) Microfabrication inside capillaries using multiphase laminar flow patterning. Science 285:83CrossRef Kenis PJA, Ismagilov RF, Whitesides GM (1999) Microfabrication inside capillaries using multiphase laminar flow patterning. Science 285:83CrossRef
Zurück zum Zitat Klages C-P, Berger C, Eichler M, Thomas M (2007) Microplasma-based treatment of inner surfaces in microfluidic devices. Contrib Plasma Phys 47(1–2):49CrossRef Klages C-P, Berger C, Eichler M, Thomas M (2007) Microplasma-based treatment of inner surfaces in microfluidic devices. Contrib Plasma Phys 47(1–2):49CrossRef
Zurück zum Zitat Kohli R, Mittal KL (2007) Developments in surface contamination and cleaning: fundamentals and applied aspects. William Andrew, New York Kohli R, Mittal KL (2007) Developments in surface contamination and cleaning: fundamentals and applied aspects. William Andrew, New York
Zurück zum Zitat Kwon KW, Choi SS, Lee SH, Kim B, Lee SN, Park MC, Kim P, Hwang SY, Suh KY (2007) Label-free, microfluidic separation and enrichment of human breast cancer cells by adhesion difference. Lab Chip 7:1461CrossRef Kwon KW, Choi SS, Lee SH, Kim B, Lee SN, Park MC, Kim P, Hwang SY, Suh KY (2007) Label-free, microfluidic separation and enrichment of human breast cancer cells by adhesion difference. Lab Chip 7:1461CrossRef
Zurück zum Zitat Marmur A, Bittoun E (2009) When Wenzel and Cassie are right: reconciling local and global considerations. Langmuir 25(3):1277–1281CrossRef Marmur A, Bittoun E (2009) When Wenzel and Cassie are right: reconciling local and global considerations. Langmuir 25(3):1277–1281CrossRef
Zurück zum Zitat Minagawa T, Tokeshi M, Kitamori T (2001) Integration of a wet analysis system on a glass chip: determination of Co(II) as 2-nitroso-1-naphthol chelates by solvent extraction and thermal lens microscopy. Lab Chip 1:72CrossRef Minagawa T, Tokeshi M, Kitamori T (2001) Integration of a wet analysis system on a glass chip: determination of Co(II) as 2-nitroso-1-naphthol chelates by solvent extraction and thermal lens microscopy. Lab Chip 1:72CrossRef
Zurück zum Zitat Park JI, Saffari A, Kumar S, Günther A, Kumacheva E (2010) Microfluidic synthesis of polymer and inorganic particulate materials. Annu Rev Mater Res 40:415CrossRef Park JI, Saffari A, Kumar S, Günther A, Kumacheva E (2010) Microfluidic synthesis of polymer and inorganic particulate materials. Annu Rev Mater Res 40:415CrossRef
Zurück zum Zitat Pease DC (1945) The significance of the contact angle in relation to the solid surface. J Phys Chem 49:107–110CrossRef Pease DC (1945) The significance of the contact angle in relation to the solid surface. J Phys Chem 49:107–110CrossRef
Zurück zum Zitat Priest C, Herminghaus S, Seemann R (2006) Generation of monodisperse gel emulsions in a microfluidic device. Appl Phys Lett 88:024106CrossRef Priest C, Herminghaus S, Seemann R (2006) Generation of monodisperse gel emulsions in a microfluidic device. Appl Phys Lett 88:024106CrossRef
Zurück zum Zitat Priest C, Quinn A, Postma A, Zelikin AN, Ralston J, Caruso F (2008) Microfluidic polymer multilayer adsorption on liquid crystal droplets for microcapsule synthesis. Lab Chip 8:2182CrossRef Priest C, Quinn A, Postma A, Zelikin AN, Ralston J, Caruso F (2008) Microfluidic polymer multilayer adsorption on liquid crystal droplets for microcapsule synthesis. Lab Chip 8:2182CrossRef
Zurück zum Zitat Priest C, Gruner PJ, Szili EJ, Al-Bataineh SA, Bradley JW, Ralston J, Steele DA, Short RD (2011) Microplasma patterning of bonded microchannels using high-precision “injected” electrodes. Lab Chip 11:541–544CrossRef Priest C, Gruner PJ, Szili EJ, Al-Bataineh SA, Bradley JW, Ralston J, Steele DA, Short RD (2011) Microplasma patterning of bonded microchannels using high-precision “injected” electrodes. Lab Chip 11:541–544CrossRef
Zurück zum Zitat Roach P, Shirtcliffe NJ, Newton MI (2008) Progress in superhydrophobic surface development. Soft Matter 4(2):224–240CrossRef Roach P, Shirtcliffe NJ, Newton MI (2008) Progress in superhydrophobic surface development. Soft Matter 4(2):224–240CrossRef
Zurück zum Zitat Saha AA, Mitra SK, Tweedie M, Roy S, McLaughlin J (2009) Experimental and numerical investigation of capillary flow in SU8 and PDMS microchannels with integrated pillars. Microfluid Nanofluid 7:451CrossRef Saha AA, Mitra SK, Tweedie M, Roy S, McLaughlin J (2009) Experimental and numerical investigation of capillary flow in SU8 and PDMS microchannels with integrated pillars. Microfluid Nanofluid 7:451CrossRef
Zurück zum Zitat Salim M, Wright PC, McArthur SL (2009) Studies of electroosmotic flow and the effects of protein adsorption in plasma-polymerized microchannel surfaces. Electrophoresis 30:1877CrossRef Salim M, Wright PC, McArthur SL (2009) Studies of electroosmotic flow and the effects of protein adsorption in plasma-polymerized microchannel surfaces. Electrophoresis 30:1877CrossRef
Zurück zum Zitat Sugiura S, Nakajima M, Seki M (2002) Prediction of droplet diameter for microchannel emulsification. Langmuir 18:3854CrossRef Sugiura S, Nakajima M, Seki M (2002) Prediction of droplet diameter for microchannel emulsification. Langmuir 18:3854CrossRef
Zurück zum Zitat Swain PS, Lipowsky R (1998) Contact angles on heterogeneous surfaces: a new look at Cassie’s and Wenzel’s laws. Langmuir 14(23):6772–6780CrossRef Swain PS, Lipowsky R (1998) Contact angles on heterogeneous surfaces: a new look at Cassie’s and Wenzel’s laws. Langmuir 14(23):6772–6780CrossRef
Zurück zum Zitat Takei G, Nonogi M, Hibara A, Kitamori T, Kim H-B (2007) Tuning microchannel wettability and fabrication of multiple-step Laplace valves. Lab Chip 7:596CrossRef Takei G, Nonogi M, Hibara A, Kitamori T, Kim H-B (2007) Tuning microchannel wettability and fabrication of multiple-step Laplace valves. Lab Chip 7:596CrossRef
Zurück zum Zitat Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet Microfluidics. Lab Chip 8:198CrossRef Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet Microfluidics. Lab Chip 8:198CrossRef
Zurück zum Zitat Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988CrossRef Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988CrossRef
Zurück zum Zitat Xia F, Jiang L (2008) Bio-inspired, smart, multiscale interfacial materials. Adv Mater 20(15):2842–2858 (Weinheim, Germany)CrossRef Xia F, Jiang L (2008) Bio-inspired, smart, multiscale interfacial materials. Adv Mater 20(15):2842–2858 (Weinheim, Germany)CrossRef
Zurück zum Zitat Yeh P-Y, Rossi NAA, Kizhakkedathu JN, Chiao M (2010) A silicone-based microfluidic chip grafted with carboxyl functionalized hyperbranched polyglycols for selective protein capture. Microfluid Nanofluid 9:199CrossRef Yeh P-Y, Rossi NAA, Kizhakkedathu JN, Chiao M (2010) A silicone-based microfluidic chip grafted with carboxyl functionalized hyperbranched polyglycols for selective protein capture. Microfluid Nanofluid 9:199CrossRef
Zurück zum Zitat Young T (1805) An essay on the cohesion of fluids. Phil Trans R Soc London 95(1):65 Young T (1805) An essay on the cohesion of fluids. Phil Trans R Soc London 95(1):65
Zurück zum Zitat Zhao B, Moore J, Beebe DJ (2001) Surface directed liquid flow inside microchannels. Science 291:1023CrossRef Zhao B, Moore J, Beebe DJ (2001) Surface directed liquid flow inside microchannels. Science 291:1023CrossRef
Zurück zum Zitat Zhao B, Viernes NOL, Moore JS, Beebe DJ (2002) Control and applications of immiscible liquids in microchannels. J Am Chem Soc 124:5284CrossRef Zhao B, Viernes NOL, Moore JS, Beebe DJ (2002) Control and applications of immiscible liquids in microchannels. J Am Chem Soc 124:5284CrossRef
Metadaten
Titel
Structure-induced spreading of liquid in micropillar arrays
verfasst von
Craig Priest
Pontus S. H. Forsberg
Rossen Sedev
John Ralston
Publikationsdatum
01.02.2012
Verlag
Springer-Verlag
Erschienen in
Microsystem Technologies / Ausgabe 2/2012
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-011-1341-8

Weitere Artikel der Ausgabe 2/2012

Microsystem Technologies 2/2012 Zur Ausgabe

Neuer Inhalt