Skip to main content
Erschienen in: Microsystem Technologies 2/2012

01.02.2012 | Technical Paper

Femtosecond laser fabrication and characterization of microchannels and waveguides in methacrylate-based polymers

verfasst von: Carmela De Marco, Raffaella Suriano, Marinella Levi, Stefano Turri, Shane Eaton, Giulio Cerullo, Roberto Osellame

Erschienen in: Microsystem Technologies | Ausgabe 2/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Femtosecond laser ablation is a promising method for producing polymeric microfluidic devices: it is a high precision processing technology resulting from an efficient energy deposition, while simultaneously minimizing heat conduction and thermal damage to the surrounding material. This work reports on the characterization of microchannels and waveguides fabricated by femtosecond laser technology in methacrylate-based polymers, precisely in thermoplastic poly(methyl methacrylate) (PMMA) and in a new material based on a high efficiency UV-curing process of methacrylic monomers bearing hydrophilic polyethylene glycol chains, namely tetraethylene glycol dimethacrylate and poly(ethylene glycol) methacrylate (PEG-MA). Microchannels in PMMA and PEG-MA, fabricated by parallel multi-scans, have sharp edges and low roughness, as investigated by Environmental Scanning Electron Microscopy and laser profilometer. Surface and physico-chemical properties after fs-laser processing were further studied by contact angle measurements and Attenuated Total Reflectance FTIR spectroscopy. Moreover, preliminary tests showed the refractive index of fs-laser PEG-MA exposed zones is different with respect to that of the surrounding polymer, suggesting that PEG-MA can be a good candidate to manufacture microfluidic devices containing integrated optic elements.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abgrall P, Gué AM (2007) Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review. J Micromech Microeng 17:R15–R49CrossRef Abgrall P, Gué AM (2007) Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review. J Micromech Microeng 17:R15–R49CrossRef
Zurück zum Zitat Bi HY, Meng S, Li Y, Guo K, Chen YP, Kong JL, Yang PY, Zhong W, Liu BH (2006) Deposition of PEG onto PMMA microchannel surface to minimize nonspecific adsorption. Lab Chip 6:769–775CrossRef Bi HY, Meng S, Li Y, Guo K, Chen YP, Kong JL, Yang PY, Zhong W, Liu BH (2006) Deposition of PEG onto PMMA microchannel surface to minimize nonspecific adsorption. Lab Chip 6:769–775CrossRef
Zurück zum Zitat Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551CrossRef Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551CrossRef
Zurück zum Zitat Chen H, Yuan L, Song W, Wu Z, Li D (2008) Biocompatible polymer materials: role of protein-surface interactions. Progr Polym Sci 33:1059–1087CrossRef Chen H, Yuan L, Song W, Wu Z, Li D (2008) Biocompatible polymer materials: role of protein-surface interactions. Progr Polym Sci 33:1059–1087CrossRef
Zurück zum Zitat De Marco C, Eaton SM, Suriano R, Turri S, Levi M, Ramponi R, Cerullo G, Osellame R (2010) Surface properties of femtosecond laser ablated PMMA. ACS Appl Mater Interface 2:2377–2384CrossRef De Marco C, Eaton SM, Suriano R, Turri S, Levi M, Ramponi R, Cerullo G, Osellame R (2010) Surface properties of femtosecond laser ablated PMMA. ACS Appl Mater Interface 2:2377–2384CrossRef
Zurück zum Zitat Gattass RR, Mazur E (2008) Femtosecond laser micromachining in transparent materials. Nat Photonics 2:219–225CrossRef Gattass RR, Mazur E (2008) Femtosecond laser micromachining in transparent materials. Nat Photonics 2:219–225CrossRef
Zurück zum Zitat Gomez D, Tekniker F, Goenaga I, Lizuain I, Ozaita M (2005) Femtosecond laser ablation for microfluidics. Opt Eng 44:051105CrossRef Gomez D, Tekniker F, Goenaga I, Lizuain I, Ozaita M (2005) Femtosecond laser ablation for microfluidics. Opt Eng 44:051105CrossRef
Zurück zum Zitat Lee JS, Ryu J, Park CB (2009) High-throughput analysis of Alzheimer’s beta-amyloid aggregation using a microfluidic self-assembly of monomersf. Anal Chem 81:2751–2759CrossRef Lee JS, Ryu J, Park CB (2009) High-throughput analysis of Alzheimer’s beta-amyloid aggregation using a microfluidic self-assembly of monomersf. Anal Chem 81:2751–2759CrossRef
Zurück zum Zitat Malek CGK (2006a) Laser processing for bio-microfluidics applications (part I). Anal Bioanal Chem 385:1351–1361CrossRef Malek CGK (2006a) Laser processing for bio-microfluidics applications (part I). Anal Bioanal Chem 385:1351–1361CrossRef
Zurück zum Zitat Malek CGK (2006b) Laser processing for bio-microfluidics applications (part II). Anal Bioanal Chem 385:1362–1369CrossRef Malek CGK (2006b) Laser processing for bio-microfluidics applications (part II). Anal Bioanal Chem 385:1362–1369CrossRef
Zurück zum Zitat Ming CH (1994) Polymer surface modification and characterization. Hanser Garden Publications, Cincinnatti Ming CH (1994) Polymer surface modification and characterization. Hanser Garden Publications, Cincinnatti
Zurück zum Zitat Obeid PJ, Christopoulos TK, Crabtree HJ, Backhouse CJ (2003) Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection. Anal Chem 75:288–295CrossRef Obeid PJ, Christopoulos TK, Crabtree HJ, Backhouse CJ (2003) Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection. Anal Chem 75:288–295CrossRef
Zurück zum Zitat Schafer D, Gibson EA, Salim EA, Palmer AE, Jimenez R, Squier J (2009) Microfluidic cell counter with embedded optical fibers fabricated by femtosecond laser ablation and anodic bonding. Opt Express 17:6068–6073CrossRef Schafer D, Gibson EA, Salim EA, Palmer AE, Jimenez R, Squier J (2009) Microfluidic cell counter with embedded optical fibers fabricated by femtosecond laser ablation and anodic bonding. Opt Express 17:6068–6073CrossRef
Zurück zum Zitat Soper SA, Ford SM, Qi S, McCarley RL, Kelly K, Murphy MC (2000) Polymeric microelectromechanical systems. Anal Chem 72:642a–651aCrossRef Soper SA, Ford SM, Qi S, McCarley RL, Kelly K, Murphy MC (2000) Polymeric microelectromechanical systems. Anal Chem 72:642a–651aCrossRef
Zurück zum Zitat Sowa S, Watanabe W, Tamaki T, Nishii J, Itoh K (2006) Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses. Opt Express 14:291–297CrossRef Sowa S, Watanabe W, Tamaki T, Nishii J, Itoh K (2006) Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses. Opt Express 14:291–297CrossRef
Zurück zum Zitat Sugino H, Ozaki K, Shirasaki Y, Arakawa T, Shoji S, Funatsu T (2009) On-chip microfluidic sorting with fluorescence spectrum detection and multiway separation. Lab Chip 9:1254–1260 Sugino H, Ozaki K, Shirasaki Y, Arakawa T, Shoji S, Funatsu T (2009) On-chip microfluidic sorting with fluorescence spectrum detection and multiway separation. Lab Chip 9:1254–1260
Zurück zum Zitat Suriano R, Kuznetsov A, Eaton SM, Kiyan R, Cerullo G, Osellame R, Chichkov B, Levi M, Turri S (2011) Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels. Appl Surf Sci 257:6243–6250 Suriano R, Kuznetsov A, Eaton SM, Kiyan R, Cerullo G, Osellame R, Chichkov B, Levi M, Turri S (2011) Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels. Appl Surf Sci 257:6243–6250
Zurück zum Zitat Tachi T, Kaji N, Tokeshi M, Baba Y (2009) Simultaneous separation, metering, and dilution of plasma from human whole blood in a microfluidic system. Anal Chem 81:3194–3198CrossRef Tachi T, Kaji N, Tokeshi M, Baba Y (2009) Simultaneous separation, metering, and dilution of plasma from human whole blood in a microfluidic system. Anal Chem 81:3194–3198CrossRef
Zurück zum Zitat Turri S, Levi M, Emilitri E, Suriano R, Bongiovanni R (2010) Direct photopolymerisation of PEG-methacrylate oligomers for an easy prototyping of microfluidic structures. Macromol Chem Phys 211:879–887 Turri S, Levi M, Emilitri E, Suriano R, Bongiovanni R (2010) Direct photopolymerisation of PEG-methacrylate oligomers for an easy prototyping of microfluidic structures. Macromol Chem Phys 211:879–887
Zurück zum Zitat Watanabe W, Sowa S, Tamaki T, Itoh K, Nishii J (2006) Three-dimensional waveguides fabricated in poly (methyl methacrylate) by a femtosecond laser. Jpn J Appl Phys 45:L765–L767 Watanabe W, Sowa S, Tamaki T, Itoh K, Nishii J (2006) Three-dimensional waveguides fabricated in poly (methyl methacrylate) by a femtosecond laser. Jpn J Appl Phys 45:L765–L767
Zurück zum Zitat Wenzel RN (1949) Surface roughness and contact angle. J Phys Chem 53:1466–1467CrossRef Wenzel RN (1949) Surface roughness and contact angle. J Phys Chem 53:1466–1467CrossRef
Zurück zum Zitat Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRef Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRef
Zurück zum Zitat Yung CW, Fiering J, Mueller AJ, Ingber DE (2009) Micromagnetic-microfluidic blood cleansing device. Lab Chip 9:1171–1177CrossRef Yung CW, Fiering J, Mueller AJ, Ingber DE (2009) Micromagnetic-microfluidic blood cleansing device. Lab Chip 9:1171–1177CrossRef
Metadaten
Titel
Femtosecond laser fabrication and characterization of microchannels and waveguides in methacrylate-based polymers
verfasst von
Carmela De Marco
Raffaella Suriano
Marinella Levi
Stefano Turri
Shane Eaton
Giulio Cerullo
Roberto Osellame
Publikationsdatum
01.02.2012
Verlag
Springer-Verlag
Erschienen in
Microsystem Technologies / Ausgabe 2/2012
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-011-1347-2

Weitere Artikel der Ausgabe 2/2012

Microsystem Technologies 2/2012 Zur Ausgabe

Neuer Inhalt