Skip to main content
Top

2023 | OriginalPaper | Chapter

Study of Different Transport Properties of MgZnO/ZnO and AlGaN/GaN High Electron Mobility Transistors: A Review

Authors : Yogesh Kumar Verma, Varun Mishra, Lucky Agarwal, Laxman Singh, Santosh Kumar Gupta

Published in: HEMT Technology and Applications

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

ZnO material exhibits superior properties required for several electronic applications. It has been noticed that the different temperature-based models of conventional AlGaN/GaN HEMTs have been widely studied; however, physics-based analytical models including the effect of temperature for MgZnO/ZnO HEMT are not sufficiently explored much as of now in the literature. Accordingly, in this brief, the different transport properties and Fermi energy levels of AlGaN/GaN and MgZnO/ZnO HEMT are studied with respect to different temperatures. Further, we have also comparatively reviewed the important transport properties including 2DEG density, internal electric field, and optical gain of AlGaN/GaN and MgZnO/ZnO quantum well structures having identical dimensions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Mimura, S. Hiyamizu, T. Fujii, K. Nanbu, A new field-effect transistor with selectively doped GaAs/n–AlxGa1−xAs heterojunctions. Jpn. J. Appl. Phys. 19(5), L225 (1980)CrossRef T. Mimura, S. Hiyamizu, T. Fujii, K. Nanbu, A new field-effect transistor with selectively doped GaAs/n–AlxGa1xAs heterojunctions. Jpn. J. Appl. Phys. 19(5), L225 (1980)CrossRef
2.
go back to reference Y.-F. Wu et al., Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors. Appl. Phys. Lett. 69(10), 1438–1440 (1996)CrossRef Y.-F. Wu et al., Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors. Appl. Phys. Lett. 69(10), 1438–1440 (1996)CrossRef
3.
go back to reference M.A. Khan et al., AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor. IEEE Electron Device Lett. 21(2), 63–65 (2000)CrossRef M.A. Khan et al., AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor. IEEE Electron Device Lett. 21(2), 63–65 (2000)CrossRef
4.
go back to reference P.M. Solomon, H. Morkoc, Modulation-doped GaAs/AlGaAs heterojunction field-effect transistors (MODFET’s), ultrahigh-speed device for supercomputers. IEEE Trans. Electron Devices 31(8), 1015–1027 (1984)CrossRef P.M. Solomon, H. Morkoc, Modulation-doped GaAs/AlGaAs heterojunction field-effect transistors (MODFET’s), ultrahigh-speed device for supercomputers. IEEE Trans. Electron Devices 31(8), 1015–1027 (1984)CrossRef
5.
go back to reference K. Lee, M.S. Shur, T.J. Drummond, H. Morkoc, Parasitic MESFET in (Al, Ga) As/GaAs modulation doped FET’s and MODFET characterization. IEEE Trans. Electron Devices 31(1), 29–35 (1984)CrossRef K. Lee, M.S. Shur, T.J. Drummond, H. Morkoc, Parasitic MESFET in (Al, Ga) As/GaAs modulation doped FET’s and MODFET characterization. IEEE Trans. Electron Devices 31(1), 29–35 (1984)CrossRef
6.
go back to reference H. Morkoc, P.M. Solomon, The hemt: A superfast transistor: an experimental GaAs–AlGaAs device switches in picoseconds and generates little heat. This is just what supercomputers need. IEEE Spectr. 21(2), 28–35 (1984)CrossRef H. Morkoc, P.M. Solomon, The hemt: A superfast transistor: an experimental GaAs–AlGaAs device switches in picoseconds and generates little heat. This is just what supercomputers need. IEEE Spectr. 21(2), 28–35 (1984)CrossRef
7.
go back to reference R.L. Anderson, Germanium-gallium arsenide heterojunctions. IBM J. Res. Dev. 4(3), 283–287 (1960)CrossRef R.L. Anderson, Germanium-gallium arsenide heterojunctions. IBM J. Res. Dev. 4(3), 283–287 (1960)CrossRef
8.
go back to reference L. Esaki, R. Tsu, Superlattice and negative conductivity in semiconductors. IBM Res. Note RC 2418 (1969) L. Esaki, R. Tsu, Superlattice and negative conductivity in semiconductors. IBM Res. Note RC 2418 (1969)
9.
go back to reference R. Dingle, H.L. Störmer, A.C. Gossard, W. Wiegmann, Electron mobilities in modulation-doped semiconductor heterojunction superlattices. Appl. Phys. Lett. 33(7), 665–667 (1978)CrossRef R. Dingle, H.L. Störmer, A.C. Gossard, W. Wiegmann, Electron mobilities in modulation-doped semiconductor heterojunction superlattices. Appl. Phys. Lett. 33(7), 665–667 (1978)CrossRef
10.
go back to reference S. Hiyamizu, T. Mimura, T. Fujii, K. Nanb, High mobility of two-dimensional electrons at the GaAs/n-AlGaAs heterojunction interface. Appl. Phys. Lett. 37(9), 805–807 (1980)CrossRef S. Hiyamizu, T. Mimura, T. Fujii, K. Nanb, High mobility of two-dimensional electrons at the GaAs/n-AlGaAs heterojunction interface. Appl. Phys. Lett. 37(9), 805–807 (1980)CrossRef
11.
go back to reference L.C. Witkowski, T.J. Drummond, C.M. Stanchak, H. Morkoc, High mobilities in AlxGa1−xAs–GaAs heterojuntions. Appl. Phys. Lett. 37(11), 1033–1035 (1980)CrossRef L.C. Witkowski, T.J. Drummond, C.M. Stanchak, H. Morkoc, High mobilities in AlxGa1xAs–GaAs heterojuntions. Appl. Phys. Lett. 37(11), 1033–1035 (1980)CrossRef
12.
go back to reference W.I. Wang, C.E.C. Wood, L.F. Eastman, Extremely high electron mobilities in modulation-doped GaAs–AlxGa1−xAs heterojunction superlattices. Electron. Lett. 17(1), 36–37 (1981)CrossRef W.I. Wang, C.E.C. Wood, L.F. Eastman, Extremely high electron mobilities in modulation-doped GaAs–AlxGa1xAs heterojunction superlattices. Electron. Lett. 17(1), 36–37 (1981)CrossRef
13.
go back to reference D. Delagebeaudeuf, N.T. Linh, Metal-(n) AlGaAs–GaAs two-dimensional electron gas FET. IEEE Trans. Electron Devices 29(6), 955–960 (1982)CrossRef D. Delagebeaudeuf, N.T. Linh, Metal-(n) AlGaAs–GaAs two-dimensional electron gas FET. IEEE Trans. Electron Devices 29(6), 955–960 (1982)CrossRef
14.
go back to reference T.J. Drummond, H. Morkoç, K. Lee, M. Shur, Model for modulation doped field effect transistor. IEEE Electron Device Lett. 3(11), 338–341 (1982)CrossRef T.J. Drummond, H. Morkoç, K. Lee, M. Shur, Model for modulation doped field effect transistor. IEEE Electron Device Lett. 3(11), 338–341 (1982)CrossRef
15.
go back to reference K. Lee, M.S. Shur, T.J. Drummond, H. Morkoc, Current-voltage and capacitance-Voltage characteristics of modulation-doped field-effect transistors. IEEE Trans. Electron Devices 30(3), 207–212 (1983)CrossRef K. Lee, M.S. Shur, T.J. Drummond, H. Morkoc, Current-voltage and capacitance-Voltage characteristics of modulation-doped field-effect transistors. IEEE Trans. Electron Devices 30(3), 207–212 (1983)CrossRef
16.
go back to reference M.H. Weiler, Y. Ayasli, DC and microwave modeis for AIxGa1−xAs/GaAs high electron mobility transistors. IEEE Trans. Electron Devices 31(12), 1854–1861 (1984)CrossRef M.H. Weiler, Y. Ayasli, DC and microwave modeis for AIxGa1xAs/GaAs high electron mobility transistors. IEEE Trans. Electron Devices 31(12), 1854–1861 (1984)CrossRef
17.
go back to reference L.P. Sadwick, K.L. Wang, A treatise on the capacitance voltage relation of high electron mobility transistors. IEEE Trans. Electron Devices 33(5), 651–656 (1986)CrossRef L.P. Sadwick, K.L. Wang, A treatise on the capacitance voltage relation of high electron mobility transistors. IEEE Trans. Electron Devices 33(5), 651–656 (1986)CrossRef
18.
go back to reference M.L. Majewski, An analytical DC model for the modulation-doped field-effect transistor. IEEE Trans. Electron Devices 34(9), 1902–1910 (1987)CrossRef M.L. Majewski, An analytical DC model for the modulation-doped field-effect transistor. IEEE Trans. Electron Devices 34(9), 1902–1910 (1987)CrossRef
19.
go back to reference G. Salmer, J. Zimmermann, R. Fauquembergue, Modeling of MODFETs. IEEE Trans. Microw. Theory Tech. 36(7), 1124–1140 (1988)CrossRef G. Salmer, J. Zimmermann, R. Fauquembergue, Modeling of MODFETs. IEEE Trans. Microw. Theory Tech. 36(7), 1124–1140 (1988)CrossRef
20.
go back to reference A.J. Shey, W.H. Ku, On the charge control of the two-dimensional electron gas for analytic modeling of HEMT’s. IEEE Electron Device Lett. 9(12), 624–626 (1988)CrossRef A.J. Shey, W.H. Ku, On the charge control of the two-dimensional electron gas for analytic modeling of HEMT’s. IEEE Electron Device Lett. 9(12), 624–626 (1988)CrossRef
21.
go back to reference A.-J. Shey, W.H. Ku, An analytical current-voltage characteristics model for high electron mobility transistors based on nonlinear charge-control formulation. IEEE Trans. Electron Devices 36(10), 2299–2306 (1989)CrossRef A.-J. Shey, W.H. Ku, An analytical current-voltage characteristics model for high electron mobility transistors based on nonlinear charge-control formulation. IEEE Trans. Electron Devices 36(10), 2299–2306 (1989)CrossRef
22.
go back to reference S.S. Shinde, P.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Optoelectronic properties of sprayed transparent and conducting indium doped zinc oxide thin films. J. Phys. D. Appl. Phys. 41(10) (2008) S.S. Shinde, P.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Optoelectronic properties of sprayed transparent and conducting indium doped zinc oxide thin films. J. Phys. D. Appl. Phys. 41(10) (2008)
23.
go back to reference Y.K. Verma, V. Mishra, S.K. Gupta, A physics based analytical model for MgZnO/ZnO HEMT. J. Circ. Syst. Comput. 29(1), 2050009-1 (2020) Y.K. Verma, V. Mishra, S.K. Gupta, A physics based analytical model for MgZnO/ZnO HEMT. J. Circ. Syst. Comput. 29(1), 2050009-1 (2020)
24.
go back to reference Ü. Özgür et al., A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 11 (2005)CrossRef Ü. Özgür et al., A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 11 (2005)CrossRef
25.
go back to reference P. Wang et al., Monte Carlo investigation of high-field electron transport characteristics in ZnMgO/ZnO heterostructures. IEEE Trans. Electron Devices 63(1), 517–523 (2016)CrossRef P. Wang et al., Monte Carlo investigation of high-field electron transport characteristics in ZnMgO/ZnO heterostructures. IEEE Trans. Electron Devices 63(1), 517–523 (2016)CrossRef
26.
go back to reference Y.K. Verma, V. Mishra, P.K. Verma, S.K. Gupta, Analytical modelling and electrical characterisation of ZnO based HEMTs. Int. J. Electron. 106(5), 707–720 (2019) Y.K. Verma, V. Mishra, P.K. Verma, S.K. Gupta, Analytical modelling and electrical characterisation of ZnO based HEMTs. Int. J. Electron. 106(5), 707–720 (2019)
27.
go back to reference M. Rouchdi, E. Salmani, B. Fares, N. Hassanain, A. Mzerd, Synthesis and characteristics of Mg doped ZnO thin films: experimental and ab-initio study. Results Phys. 7, 620–627 (2017)CrossRef M. Rouchdi, E. Salmani, B. Fares, N. Hassanain, A. Mzerd, Synthesis and characteristics of Mg doped ZnO thin films: experimental and ab-initio study. Results Phys. 7, 620–627 (2017)CrossRef
28.
go back to reference M. Caglar, Y. Caglar, S. Ilican, Investigation of the effect of Mg doping for improvements of optical and electrical properties. Phys. B Condens. Matter 485, 6–13 (2016)CrossRef M. Caglar, Y. Caglar, S. Ilican, Investigation of the effect of Mg doping for improvements of optical and electrical properties. Phys. B Condens. Matter 485, 6–13 (2016)CrossRef
29.
go back to reference S.S. Shinde, A.P. Korade, C.H. Bhosale, K.Y. Rajpure, Influence of tin doping onto structural, morphological, optoelectronic and impedance properties of sprayed ZnO thin films. J. Alloys Compd. 551, 688–693 (2013)CrossRef S.S. Shinde, A.P. Korade, C.H. Bhosale, K.Y. Rajpure, Influence of tin doping onto structural, morphological, optoelectronic and impedance properties of sprayed ZnO thin films. J. Alloys Compd. 551, 688–693 (2013)CrossRef
30.
go back to reference S.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Size dependent electron-phonon coupling in N, Li, In, Ga, F and Ag doped ZnO thin films. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 98, 453–456 (2012) S.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Size dependent electron-phonon coupling in N, Li, In, Ga, F and Ag doped ZnO thin films. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 98, 453–456 (2012)
31.
go back to reference L. Agarwal, B.K. Singh, S. Tripathi, P. Chakrabarti, Fabrication and characterization of Pd/cu doped ZnO/Si and Ni/cu doped ZnO/Si Schottky diodes. Thin Solid Films 612, 259–266 (2016)CrossRef L. Agarwal, B.K. Singh, S. Tripathi, P. Chakrabarti, Fabrication and characterization of Pd/cu doped ZnO/Si and Ni/cu doped ZnO/Si Schottky diodes. Thin Solid Films 612, 259–266 (2016)CrossRef
32.
go back to reference B.K. Singh, S. Tripathi, pn homojunction based on Bi doped p-type ZnO and undoped n-type ZnO for optoelectronic application in yellow–red region of visible spectrum. J. Lumin. 198, 427–432 (2018)CrossRef B.K. Singh, S. Tripathi, pn homojunction based on Bi doped p-type ZnO and undoped n-type ZnO for optoelectronic application in yellow–red region of visible spectrum. J. Lumin. 198, 427–432 (2018)CrossRef
33.
go back to reference Z.R. Dai, Z.W. Pan, Z.L. Wang, Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 13(1), 9–24 (2003)CrossRef Z.R. Dai, Z.W. Pan, Z.L. Wang, Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 13(1), 9–24 (2003)CrossRef
35.
go back to reference J.H. Campbell et al., NIF optical materials and fabrication technologies: an overview, in Optical Engineering at the Lawrence Livermore National Laboratory II: The National Ignition Facility, vol. 5341 (2004), pp. 84–101 J.H. Campbell et al., NIF optical materials and fabrication technologies: an overview, in Optical Engineering at the Lawrence Livermore National Laboratory II: The National Ignition Facility, vol. 5341 (2004), pp. 84–101
36.
go back to reference S.S. Shinde, P.S. Shinde, S.M. Pawar, A.V. Moholkar, C.H. Bhosale, K.Y. Rajpure, Physical properties of transparent and conducting sprayed fluorine doped zinc oxide thin films. Solid State Sci. 10(9), 1209–1214 (2008)CrossRef S.S. Shinde, P.S. Shinde, S.M. Pawar, A.V. Moholkar, C.H. Bhosale, K.Y. Rajpure, Physical properties of transparent and conducting sprayed fluorine doped zinc oxide thin films. Solid State Sci. 10(9), 1209–1214 (2008)CrossRef
37.
go back to reference M.A. Khan et al., Enhanced sheet charge density in DIBS grown CdO alloyed ZnO buffer based heterostructure. IEEE Electron Device Lett. 39(6), 827–830 (2018)CrossRef M.A. Khan et al., Enhanced sheet charge density in DIBS grown CdO alloyed ZnO buffer based heterostructure. IEEE Electron Device Lett. 39(6), 827–830 (2018)CrossRef
38.
go back to reference F. Benharrats, K. Zitouni, A. Kadri, B. Gil, Determination of piezoelectric and spontaneous polarization fields in CdxZn1−xO/ZnO quantum wells grown along the polar 〈0001〉 direction. Superlattices Microstruct. 47(5), 592–596 (2010)CrossRef F. Benharrats, K. Zitouni, A. Kadri, B. Gil, Determination of piezoelectric and spontaneous polarization fields in CdxZn1xO/ZnO quantum wells grown along the polar 〈0001〉 direction. Superlattices Microstruct. 47(5), 592–596 (2010)CrossRef
39.
go back to reference A. Ashrafi, C. Jagadish, Review of zincblende ZnO: stability of metastable ZnO phases. J. Appl. Phys. 102(7), 4 (2007)CrossRef A. Ashrafi, C. Jagadish, Review of zincblende ZnO: stability of metastable ZnO phases. J. Appl. Phys. 102(7), 4 (2007)CrossRef
40.
go back to reference V. Bilgin, S. Kose, F. Atay, I. Akyuz, The effect of substrate temperature on the structural and some physical properties of ultrasonically sprayed CdS films. Mater. Chem. Phys. 94(1), 103–108 (2005)CrossRef V. Bilgin, S. Kose, F. Atay, I. Akyuz, The effect of substrate temperature on the structural and some physical properties of ultrasonically sprayed CdS films. Mater. Chem. Phys. 94(1), 103–108 (2005)CrossRef
41.
go back to reference K. Li, D. Xue, Estimation of electronegativity values of elements in different valence states. J. Phys. Chem. A 110(39), 11332–11337 (2006)CrossRef K. Li, D. Xue, Estimation of electronegativity values of elements in different valence states. J. Phys. Chem. A 110(39), 11332–11337 (2006)CrossRef
42.
go back to reference J.H. Lee et al., A study of electrical enhancement of polycrystalline MgZnO/ZnO bi-layer thin film transistors dependence on the thickness of ZnO layer. Curr. Appl. Phys. 15(9), 1010–1014 (2015)CrossRef J.H. Lee et al., A study of electrical enhancement of polycrystalline MgZnO/ZnO bi-layer thin film transistors dependence on the thickness of ZnO layer. Curr. Appl. Phys. 15(9), 1010–1014 (2015)CrossRef
43.
go back to reference B.K. Singh, S. Tripathi, Fabrication and characterization of Au/p-ZnO Schottky contacts. Superlattices Microstruct. 85, 697–706 (2015)CrossRef B.K. Singh, S. Tripathi, Fabrication and characterization of Au/p-ZnO Schottky contacts. Superlattices Microstruct. 85, 697–706 (2015)CrossRef
45.
go back to reference M.A. Khan, J.M. Van Hove, J.N. Kuznia, D.T. Olson, High electron mobility GaN/AlxGa1−xN heterostructures grown by low-pressure metalorganic chemical vapor deposition. Appl. Phys. Lett. 58(21), 2408–2410 (1991)CrossRef M.A. Khan, J.M. Van Hove, J.N. Kuznia, D.T. Olson, High electron mobility GaN/AlxGa1xN heterostructures grown by low-pressure metalorganic chemical vapor deposition. Appl. Phys. Lett. 58(21), 2408–2410 (1991)CrossRef
46.
go back to reference M.S. Shur, GaN based transistors for high power applications. Solid. State. Electron. 42(12), 2131–2138 (1998)CrossRef M.S. Shur, GaN based transistors for high power applications. Solid. State. Electron. 42(12), 2131–2138 (1998)CrossRef
47.
go back to reference M.A. Khan, J.N. Kuznia, D.T. Olson, W.J. Schaff, J.W. Burm, M.S. Shur, Microwave performance of a 0.25 μm gate AlGaN/GaN heterostructure field effect transistor. Appl. Phys. Lett. 65(9), 1121–1123 (1994) M.A. Khan, J.N. Kuznia, D.T. Olson, W.J. Schaff, J.W. Burm, M.S. Shur, Microwave performance of a 0.25 μm gate AlGaN/GaN heterostructure field effect transistor. Appl. Phys. Lett. 65(9), 1121–1123 (1994)
48.
go back to reference M.A. Khan, M.S. Shur, J.N. Kuznia, Q. Chen, J. Burm, W. Schaff, Temperature activated conductance in GaN/AlGaN heterostructure field effect transistors operating at temperatures up to 300 °C. Appl. Phys. Lett. 66(9), 1083–1085 (1995)CrossRef M.A. Khan, M.S. Shur, J.N. Kuznia, Q. Chen, J. Burm, W. Schaff, Temperature activated conductance in GaN/AlGaN heterostructure field effect transistors operating at temperatures up to 300 °C. Appl. Phys. Lett. 66(9), 1083–1085 (1995)CrossRef
49.
go back to reference J.M. Redwing et al., Two-dimensional electron gas properties of AlGaN/GaN heterostructures grown on 6H–SiC and sapphire substrates. Appl. Phys. Lett. 69(7), 963–965 (1996)CrossRef J.M. Redwing et al., Two-dimensional electron gas properties of AlGaN/GaN heterostructures grown on 6H–SiC and sapphire substrates. Appl. Phys. Lett. 69(7), 963–965 (1996)CrossRef
50.
go back to reference S.C. Binari, J.M. Redwing, G. Kelner, W. Kruppa, AlGaN/GaN HEMTs grown on SiC substrates. Electron. Lett. 33(3), 242–243 (1997)CrossRef S.C. Binari, J.M. Redwing, G. Kelner, W. Kruppa, AlGaN/GaN HEMTs grown on SiC substrates. Electron. Lett. 33(3), 242–243 (1997)CrossRef
51.
go back to reference W.S. Tan, M.J. Uren, P.W. Fry, P.A. Houston, R.S. Balmer, T. Martin, High temperature performance of AlGaN/GaN HEMTs on Si substrates. Solid. State. Electron. 50(3), 511–513 (2006)CrossRef W.S. Tan, M.J. Uren, P.W. Fry, P.A. Houston, R.S. Balmer, T. Martin, High temperature performance of AlGaN/GaN HEMTs on Si substrates. Solid. State. Electron. 50(3), 511–513 (2006)CrossRef
52.
go back to reference I. Daumiller, C. Kirchner, M. Kamp, K.J. Ebeling, E. Kohn, Evaluation of the temperature stability of AlGaN/GaN heterostructure FETs. IEEE Electron Device Lett. 20(9), 448–450 (1999)CrossRef I. Daumiller, C. Kirchner, M. Kamp, K.J. Ebeling, E. Kohn, Evaluation of the temperature stability of AlGaN/GaN heterostructure FETs. IEEE Electron Device Lett. 20(9), 448–450 (1999)CrossRef
53.
go back to reference I.P. Smorchkova et al., Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 86(8), 4520–4526 (1999)CrossRef I.P. Smorchkova et al., Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 86(8), 4520–4526 (1999)CrossRef
54.
go back to reference S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, High-temperature effects of AlGaN/GaN high-electron-mobility transistors on sapphire and semi-insulating SiC substrates. Appl. Phys. Lett. 80(12), 2186–2188 (2002)CrossRef S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, High-temperature effects of AlGaN/GaN high-electron-mobility transistors on sapphire and semi-insulating SiC substrates. Appl. Phys. Lett. 80(12), 2186–2188 (2002)CrossRef
55.
go back to reference N. Maeda, K. Tsubaki, T. Saitoh, N. Kobayashi, High-temperature electron transport properties in AlGaN/GaN heterostructures. Appl. Phys. Lett. 79(11), 1634–1636 (2001)CrossRef N. Maeda, K. Tsubaki, T. Saitoh, N. Kobayashi, High-temperature electron transport properties in AlGaN/GaN heterostructures. Appl. Phys. Lett. 79(11), 1634–1636 (2001)CrossRef
56.
go back to reference Y.-F. Wu et al., High Al-content AlGaN/GaN MODFETs for ultrahigh performance. IEEE Electron Device Lett. 19(2), 50–53 (1998)CrossRef Y.-F. Wu et al., High Al-content AlGaN/GaN MODFETs for ultrahigh performance. IEEE Electron Device Lett. 19(2), 50–53 (1998)CrossRef
57.
go back to reference Y. Zhang, J. Singh, Charge control and mobility studies for an AlGaN/GaN high electron mobility transistor. J. Appl. Phys. 85(1), 587–594 (1999)CrossRef Y. Zhang, J. Singh, Charge control and mobility studies for an AlGaN/GaN high electron mobility transistor. J. Appl. Phys. 85(1), 587–594 (1999)CrossRef
58.
go back to reference A. Agrawal, S. Sen, S. Haldar, R.S. Gupta, Analytical model for dc characteristics and small-signal parameters of AIGaN/GaN modulation-doped field-effect transistor for microwave circuit applications. Microw. Opt. Technol. Lett. 27(6), 413–419 (2000)CrossRef A. Agrawal, S. Sen, S. Haldar, R.S. Gupta, Analytical model for dc characteristics and small-signal parameters of AIGaN/GaN modulation-doped field-effect transistor for microwave circuit applications. Microw. Opt. Technol. Lett. 27(6), 413–419 (2000)CrossRef
59.
go back to reference Y.-F. Wu, D. Kapolnek, J.P. Ibbetson, P. Parikh, B.P. Keller, U.K. Mishra, Very-high power density AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 48(3), 586–590 (2001)CrossRef Y.-F. Wu, D. Kapolnek, J.P. Ibbetson, P. Parikh, B.P. Keller, U.K. Mishra, Very-high power density AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 48(3), 586–590 (2001)CrossRef
60.
go back to reference A. Kranti, S. Haldar, R.S. Gupta, An accurate charge control model for spontaneous and piezoelectric polarization dependent two-dimensional electron gas sheet charge density of lattice-mismatched AlGaN/GaN HEMTs. Solid State Electron. 46, 621–630 (2002) A. Kranti, S. Haldar, R.S. Gupta, An accurate charge control model for spontaneous and piezoelectric polarization dependent two-dimensional electron gas sheet charge density of lattice-mismatched AlGaN/GaN HEMTs. Solid State Electron. 46, 621–630 (2002)
61.
go back to reference F.A. Marino, P. Menegoli, High performance multigate transistor. Google Patents (2015) F.A. Marino, P. Menegoli, High performance multigate transistor. Google Patents (2015)
62.
go back to reference S. Wu, R.T. Webster, A.F.M. Anwar, Physics-based intrinsic model for AlGaN/GaN HEMTs. Mater. Res. Soc. Internet J. Nitride Semicond. Res. 4, 775–780 (1999) S. Wu, R.T. Webster, A.F.M. Anwar, Physics-based intrinsic model for AlGaN/GaN HEMTs. Mater. Res. Soc. Internet J. Nitride Semicond. Res. 4, 775–780 (1999)
63.
go back to reference J. Nause, S. Ganesan, High-electron mobility transistor with zinc oxide. Google Patents (2006) J. Nause, S. Ganesan, High-electron mobility transistor with zinc oxide. Google Patents (2006)
64.
go back to reference T. Edahiro, N. Fujimura, T. Ito, Formation of two-dimensional electron gas and the magnetotransport behavior of ZnMnO/ZnO heterostructure. J. Appl. Phys. 93(10), 7673–7675 (2003)CrossRef T. Edahiro, N. Fujimura, T. Ito, Formation of two-dimensional electron gas and the magnetotransport behavior of ZnMnO/ZnO heterostructure. J. Appl. Phys. 93(10), 7673–7675 (2003)CrossRef
65.
go back to reference K. Koike et al., Piezoelectric carrier confinement by lattice mismatch at ZnO/Zn0.6Mg0.4O heterointerface. Jpn. J. Appl. Phys. 43, L1372 (2004)CrossRef K. Koike et al., Piezoelectric carrier confinement by lattice mismatch at ZnO/Zn0.6Mg0.4O heterointerface. Jpn. J. Appl. Phys. 43, L1372 (2004)CrossRef
66.
go back to reference K. Koike, I. Nakashima, K. Hashimoto, S. Sasa, M. Inoue, M. Yano, Characteristics of a Zn0.7Mg0.3O/ZnO heterostructure field-effect transistor grown on sapphire substrate by molecular-beam epitaxy. Appl. Phys. Lett. 87(11), 7–10 (2005)CrossRef K. Koike, I. Nakashima, K. Hashimoto, S. Sasa, M. Inoue, M. Yano, Characteristics of a Zn0.7Mg0.3O/ZnO heterostructure field-effect transistor grown on sapphire substrate by molecular-beam epitaxy. Appl. Phys. Lett. 87(11), 7–10 (2005)CrossRef
67.
go back to reference H. Tampo et al., Two-dimensional electron gas in Zn polar ZnMgO/ZnO heterostructures grown by radical source molecular beam epitaxy. Appl. Phys. Lett. 89(13), 67–70 (2006)CrossRef H. Tampo et al., Two-dimensional electron gas in Zn polar ZnMgO/ZnO heterostructures grown by radical source molecular beam epitaxy. Appl. Phys. Lett. 89(13), 67–70 (2006)CrossRef
68.
go back to reference H. Tampo et al., Strong excitonic transition of Zn1−x MgxO alloy. Appl. Phys. Lett. 91(26), 261907 (2007)CrossRef H. Tampo et al., Strong excitonic transition of Zn1x MgxO alloy. Appl. Phys. Lett. 91(26), 261907 (2007)CrossRef
69.
go back to reference J.D. Ye et al., Two-dimensional electron gas in Zn-polar ZnMgO/ZnO heterostructure grown by metal-organic vapor phase epitaxy. Appl. Phys. Lett. 97(11), 2010–2012 (2010)CrossRef J.D. Ye et al., Two-dimensional electron gas in Zn-polar ZnMgO/ZnO heterostructure grown by metal-organic vapor phase epitaxy. Appl. Phys. Lett. 97(11), 2010–2012 (2010)CrossRef
70.
go back to reference H. Tampo et al., Polarization-induced two-dimensional electron gases in ZnMgO/ZnO heterostructures. Appl. Phys. Lett. 93(20), 11–14 (2008)CrossRef H. Tampo et al., Polarization-induced two-dimensional electron gases in ZnMgO/ZnO heterostructures. Appl. Phys. Lett. 93(20), 11–14 (2008)CrossRef
71.
go back to reference M. Brandt, H. von Wenckstern, G. Benndorf, H. Hochmuth, M. Lorenz, M. Grundmann, Formation of a two-dimensional electron gas in ZnO/MgZnO single heterostructures and quantum wells. Thin Solid Films 518(4), 1048–1052 (2009)CrossRef M. Brandt, H. von Wenckstern, G. Benndorf, H. Hochmuth, M. Lorenz, M. Grundmann, Formation of a two-dimensional electron gas in ZnO/MgZnO single heterostructures and quantum wells. Thin Solid Films 518(4), 1048–1052 (2009)CrossRef
72.
go back to reference H.A. Chin et al., Two dimensional electron gases in polycrystalline MgZnO/ZnO heterostructures grown by RF-sputtering process. J. Appl. Phys. 108(5), 2–5 (2010)CrossRef H.A. Chin et al., Two dimensional electron gases in polycrystalline MgZnO/ZnO heterostructures grown by RF-sputtering process. J. Appl. Phys. 108(5), 2–5 (2010)CrossRef
73.
go back to reference S. Sasa et al., Microwave performance of ZnO/ZnMgO heterostructure field effect transistors. Phys. Status Solidi 208(2), 449–452 (2011)CrossRef S. Sasa et al., Microwave performance of ZnO/ZnMgO heterostructure field effect transistors. Phys. Status Solidi 208(2), 449–452 (2011)CrossRef
74.
go back to reference J. He, P. Wang, H. Chen, X. Guo, L. Guo, Y. Yang, Study on temperature effect on properties of ZnO/MgZnO based quantum cascade detector in mid-infrared region. Appl. Phys. Express 10(1), 11101 (2016)CrossRef J. He, P. Wang, H. Chen, X. Guo, L. Guo, Y. Yang, Study on temperature effect on properties of ZnO/MgZnO based quantum cascade detector in mid-infrared region. Appl. Phys. Express 10(1), 11101 (2016)CrossRef
75.
go back to reference S.-H. Jang, S.F. Chichibu, Structural, elastic, and polarization parameters and band structures of wurtzite ZnO and MgO. J. Appl. Phys. 112(7), 73503 (2012)CrossRef S.-H. Jang, S.F. Chichibu, Structural, elastic, and polarization parameters and band structures of wurtzite ZnO and MgO. J. Appl. Phys. 112(7), 73503 (2012)CrossRef
76.
go back to reference S.-H. Park, D. Ahn, Spontaneous and piezoelectric polarization effects in wurtzite ZnO/MgZnO quantum well lasers. Appl. Phys. Lett. 87(25), 253509 (2005)CrossRef S.-H. Park, D. Ahn, Spontaneous and piezoelectric polarization effects in wurtzite ZnO/MgZnO quantum well lasers. Appl. Phys. Lett. 87(25), 253509 (2005)CrossRef
Metadata
Title
Study of Different Transport Properties of MgZnO/ZnO and AlGaN/GaN High Electron Mobility Transistors: A Review
Authors
Yogesh Kumar Verma
Varun Mishra
Lucky Agarwal
Laxman Singh
Santosh Kumar Gupta
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-2165-0_4