Skip to main content
Top
Published in: Metallurgist 11-12/2019

13-03-2019

Study of Strategies for Forming Stainless Steel Objects with Cellular Structures by Selective Laser Melting

Authors: A. Ya. Travyanov, P. V. Petrovskii, V. V. Cheverikin, P. Yu. Sokolov, A. A. Davidenko

Published in: Metallurgist | Issue 11-12/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Selective laser melting (SLM) technology, which exhibits high printing resolution capacity, in used in order to prepare objects with cellular structures corrosion-resistant steel (316L). Cellular structures are considered as promising elements for topological optimization with the aim of reducing weight and giving an object special properties. The effect is studied in this work of strategies for laser beam scanning on an object being formed with a cellular BCC structure of steel 03Kh16N15MZ during SLM in an SLM280 unit. It is shown that depending on production regimes for object preparation with these structures there are changes in cellular structure strut minimum diameter, nature and distribution of defects, and mechanical properties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Dumas, P. Terriault, and V. Brailovski, “Modelling and characterization of a porosity graded lattice structure for additively manufactured biomaterials,” Mater. Des., 121, 383–392 (2017).CrossRef M. Dumas, P. Terriault, and V. Brailovski, “Modelling and characterization of a porosity graded lattice structure for additively manufactured biomaterials,” Mater. Des., 121, 383–392 (2017).CrossRef
2.
go back to reference T. A. Schaedler, A. J. Jacobsen, A. Torrents, et al., “Ultralight metallic microlattices,” Sci., 344, No. 6058, 962–965 (2011).CrossRef T. A. Schaedler, A. J. Jacobsen, A. Torrents, et al., “Ultralight metallic microlattices,” Sci., 344, No. 6058, 962–965 (2011).CrossRef
3.
go back to reference J. Banhart, “Manufacture, characterisation and application of cellular metals and metal foams,” Prog. Mater. Sci., 46, 559–632 (2001).CrossRef J. Banhart, “Manufacture, characterisation and application of cellular metals and metal foams,” Prog. Mater. Sci., 46, 559–632 (2001).CrossRef
4.
go back to reference C. Simoneau, P. Terriault, B. Jetté, et al., “Development of a porous metallic femoral stem: design, manufacturing, simulation and mechanical testing,” Mater. Des., 114, 546–556 (2017).CrossRef C. Simoneau, P. Terriault, B. Jetté, et al., “Development of a porous metallic femoral stem: design, manufacturing, simulation and mechanical testing,” Mater. Des., 114, 546–556 (2017).CrossRef
5.
go back to reference X. Zheng, H. Lee, T. H. Weisgraber, et al., “Ultralight, ultrastiff mechanical metamaterials,” Sci., 344, No. 6190, 1373–1377 (2014).CrossRef X. Zheng, H. Lee, T. H. Weisgraber, et al., “Ultralight, ultrastiff mechanical metamaterials,” Sci., 344, No. 6190, 1373–1377 (2014).CrossRef
6.
go back to reference X. P. Tan, Y. J. Tan, C. S. L. Chow, et al., “Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility,” Mater. Sci. Eng., 76, 1328–1343 (2017).CrossRef X. P. Tan, Y. J. Tan, C. S. L. Chow, et al., “Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility,” Mater. Sci. Eng., 76, 1328–1343 (2017).CrossRef
7.
go back to reference Z. Xiao, Y. Yang, R. Xiao, et al., “Evaluation of topology-optimized lattice structures manufactured via selective laser melting,” Mater. Des., 143, 27–37 (2018).CrossRef Z. Xiao, Y. Yang, R. Xiao, et al., “Evaluation of topology-optimized lattice structures manufactured via selective laser melting,” Mater. Des., 143, 27–37 (2018).CrossRef
8.
go back to reference P. Köhnen, Ch. Haase, J. Bültmann, et al., “Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel,” Mater. Des., 145, 2005–2017 (2018).CrossRef P. Köhnen, Ch. Haase, J. Bültmann, et al., “Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel,” Mater. Des., 145, 2005–2017 (2018).CrossRef
9.
go back to reference Wohlers Associates, Wohlers Report 2017: 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report, Wohlers Associates, Fort Collins (Colo.) (2017). Wohlers Associates, Wohlers Report 2017: 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report, Wohlers Associates, Fort Collins (Colo.) (2017).
10.
go back to reference D. D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, “Laser additive manufacturing of metallic components: materials, processes and mechanisms,” Int. Mater. Rev., 57, 133–164 (2012).CrossRef D. D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, “Laser additive manufacturing of metallic components: materials, processes and mechanisms,” Int. Mater. Rev., 57, 133–164 (2012).CrossRef
11.
go back to reference D. L. Bourell, “Perspectives on additive manufacturing,” Annul. Rev. Mater. Res., 46, No. 1, 1–18 (2016).CrossRef D. L. Bourell, “Perspectives on additive manufacturing,” Annul. Rev. Mater. Res., 46, No. 1, 1–18 (2016).CrossRef
12.
go back to reference D. Ivanov, A. Travyanov, P. Petrovskiy, et al., “Evolution of structure and properties of the nickel-based alloy EP718 after the SLM growth and after different types of heat and mechanical treatment,” Additive Manufacturing, 18, 269–275 (2017).CrossRef D. Ivanov, A. Travyanov, P. Petrovskiy, et al., “Evolution of structure and properties of the nickel-based alloy EP718 after the SLM growth and after different types of heat and mechanical treatment,” Additive Manufacturing, 18, 269–275 (2017).CrossRef
13.
go back to reference M. Doubenskaia, A. Domashenkov, I. Smurov, and P. S. Petrovskiy, “Study of selective laser melting of intermetallic TiAl powder using integral analysis,” Int. J. Machine Tools & Manufacture, 129, 1–14 (2018).CrossRef M. Doubenskaia, A. Domashenkov, I. Smurov, and P. S. Petrovskiy, “Study of selective laser melting of intermetallic TiAl powder using integral analysis,” Int. J. Machine Tools & Manufacture, 129, 1–14 (2018).CrossRef
14.
go back to reference I. Yadroitsev, A. Gusarov, I. Yadroitsava, and I. Smurov, “Single track formation in selective laser melting of metal powders,” J. Mater. Proc. Tech., 210, No. 12, 1624–1631 (2010).CrossRef I. Yadroitsev, A. Gusarov, I. Yadroitsava, and I. Smurov, “Single track formation in selective laser melting of metal powders,” J. Mater. Proc. Tech., 210, No. 12, 1624–1631 (2010).CrossRef
15.
go back to reference J. Zielinski, H. Mindt, J. Chting, et al., “Numerical and experimental study of Ti6Al4V components manufactured using powder bed fusion additive manufacturing,” JOM, 69, No. 12, 2711–2718 (2017).CrossRef J. Zielinski, H. Mindt, J. Chting, et al., “Numerical and experimental study of Ti6Al4V components manufactured using powder bed fusion additive manufacturing,” JOM, 69, No. 12, 2711–2718 (2017).CrossRef
16.
go back to reference L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, 2nd ed., Cambridge. Univ. Press, Cambridge (2010). L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, 2nd ed., Cambridge. Univ. Press, Cambridge (2010).
Metadata
Title
Study of Strategies for Forming Stainless Steel Objects with Cellular Structures by Selective Laser Melting
Authors
A. Ya. Travyanov
P. V. Petrovskii
V. V. Cheverikin
P. Yu. Sokolov
A. A. Davidenko
Publication date
13-03-2019
Publisher
Springer US
Published in
Metallurgist / Issue 11-12/2019
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-019-00768-0

Other articles of this Issue 11-12/2019

Metallurgist 11-12/2019 Go to the issue

Premium Partners