Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 4/2014

01-04-2014

Study on terbium doped lanthanum oxybromide luminescent nanoribbons and nanofibers

Authors: Wenwen Ma, Xiangting Dong, Jinxian Wang, Wensheng Yu, Guixia Liu

Published in: Journal of Materials Science: Materials in Electronics | Issue 4/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Terbium doped lanthanum oxybromide (LaOBr:Tb3+) nanoribbons and nanofibers were successfully synthesized by double-crucible bromination of the electrospinning-derived La2O3:Tb3+ nanoribbons and nanofibers using NH4Br powders as the bromine source. The structure and morphology of the samples were investigated by X-ray diffractometry and scanning electron microscopy. The results indicated that LaOBr:Tb3+ nanoribbons and nanofibers were pure tetragonal in structure with space group of P4/nmm. The width of LaOBr:Tb3+ nanoribbons were 2.33 ± 0.33 μm and the diameter of LaOBr:Tb3+ nanofibers was 90.08 ± 15.19 nm. The photoluminescent properties of LaOBr:Tb3+ nanoribbons and nanofibers were also characterized systematically. Under the excitation of 253-nm ultraviolet light, LaOBr:Tb3+ nanostructures exhibit the green emission of predominant peak at 543 nm. The optimum doping molar concentration of Tb3+ ions in the LaOBr:Tb3+ nanoribbons is 5 %. Interestingly, the luminescence intensity of LaOBr:5 %Tb3+ nanofibers is obviously greater than that of LaOBr:5 %Tb3+ nanoribbons under the same measuring conditions. Moreover, the luminescence colors of LaOBr:Tb3+ nanostructures are located in the green region in Commission Internationale de L’Eclairage chromaticity coordinates diagram. The mechanism of double-crucible bromination method was also proposed. This new bromination technique not only can inherit the morphology of rare earth oxides precursor, but also can be used to fabricate pure-phase rare earth oxybromide at low temperature compared with conventional high temperature solid state bromination reaction method. LaOBr:Tb3+ nanostructures are promising nanomaterials for applications in the fields of light display systems and optoelectronic devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference X. Li, M. Yu, Z.Y. Hou, G.G. Hai, P.A. Ma, W.X. Wang, Z.Y. Cheng, J. Lin, J. Solid State Chem. 184, 141–148 (2011)CrossRef X. Li, M. Yu, Z.Y. Hou, G.G. Hai, P.A. Ma, W.X. Wang, Z.Y. Cheng, J. Lin, J. Solid State Chem. 184, 141–148 (2011)CrossRef
2.
go back to reference Z.Y. Hou, L.L. Wang, H.Z. Lian, R.T. Chai, C.M. Zhang, Z.Y. Cheng, J. Lin, J. Solid State Chem. 182, 698–708 (2009)CrossRef Z.Y. Hou, L.L. Wang, H.Z. Lian, R.T. Chai, C.M. Zhang, Z.Y. Cheng, J. Lin, J. Solid State Chem. 182, 698–708 (2009)CrossRef
3.
go back to reference X. Li, M. Yu, Z.Y. Hou, W.X. Wang, G.G. Li, Z.Y. Cheng, R.T. Chai, J. Lin, J. Colloid Interface Sci. 349, 166–172 (2010)CrossRef X. Li, M. Yu, Z.Y. Hou, W.X. Wang, G.G. Li, Z.Y. Cheng, R.T. Chai, J. Lin, J. Colloid Interface Sci. 349, 166–172 (2010)CrossRef
4.
go back to reference Q.L. Ma, W.S. Yu, X.T. Dong, J.X. Wang, G.X. Liu, J. Xu, Opt. Mater. 35, 526–530 (2013)CrossRef Q.L. Ma, W.S. Yu, X.T. Dong, J.X. Wang, G.X. Liu, J. Xu, Opt. Mater. 35, 526–530 (2013)CrossRef
5.
go back to reference L.X. Song, P.F. Du, J. Xiong, X.N. Fan, Y.X. Jiao, J. Lumin. 132, 171–174 (2012)CrossRef L.X. Song, P.F. Du, J. Xiong, X.N. Fan, Y.X. Jiao, J. Lumin. 132, 171–174 (2012)CrossRef
6.
go back to reference H.W. Song, L.X. Yu, S.Z. Lu, Z.X. Liu, L.M. Yang, T. Wang, Opt. Lett. 30, 483–485 (2005)CrossRef H.W. Song, L.X. Yu, S.Z. Lu, Z.X. Liu, L.M. Yang, T. Wang, Opt. Lett. 30, 483–485 (2005)CrossRef
7.
go back to reference X. Zhang, C.L. Shao, Z.Y. Zhang, J.H. Li, P. Zhang, M.Y. Zhang, J.B. Mu, Z.C. Guo, P.P. Liang, Y.C. Liu, Appl. Mater. Interfaces 4, 785–7901 (2012)CrossRef X. Zhang, C.L. Shao, Z.Y. Zhang, J.H. Li, P. Zhang, M.Y. Zhang, J.B. Mu, Z.C. Guo, P.P. Liang, Y.C. Liu, Appl. Mater. Interfaces 4, 785–7901 (2012)CrossRef
9.
go back to reference J. Hölsä, M. Lastusaari, J. Niittykoski, R.S. Puche, Phys. Chem. Chem. Phys. 4, 3091–3097 (2002)CrossRef J. Hölsä, M. Lastusaari, J. Niittykoski, R.S. Puche, Phys. Chem. Chem. Phys. 4, 3091–3097 (2002)CrossRef
10.
go back to reference K.R. Reddy, V. Aruna, T. Balaji, K. Annapurna, S. Buddhudu, Mater. Chem. Phys. 52, 157–160 (1998)CrossRef K.R. Reddy, V. Aruna, T. Balaji, K. Annapurna, S. Buddhudu, Mater. Chem. Phys. 52, 157–160 (1998)CrossRef
11.
12.
go back to reference J.H. Yang, J. Gong, H.G. Fan, L.L. Yang, J. Mater. Sci. 40, 3725–3728 (2005)CrossRef J.H. Yang, J. Gong, H.G. Fan, L.L. Yang, J. Mater. Sci. 40, 3725–3728 (2005)CrossRef
13.
14.
go back to reference J.R. Niu, J.G. Deng, G.Z. Wang, H.X. Dai, H. He, W.G. Qiu, X.H. Zi, J. Chin. Rare Earth Soc. 24, 46–49 (2006) J.R. Niu, J.G. Deng, G.Z. Wang, H.X. Dai, H. He, W.G. Qiu, X.H. Zi, J. Chin. Rare Earth Soc. 24, 46–49 (2006)
15.
go back to reference Y.H. Hou, G. Chang, W.Z. Weng, W.S. Xia, H.L. Wan, Chin. J. Catal. 32, 1531–1536 (2011) Y.H. Hou, G. Chang, W.Z. Weng, W.S. Xia, H.L. Wan, Chin. J. Catal. 32, 1531–1536 (2011)
16.
go back to reference Z Mazurak, A Garcia, C Fouassier, J. Phys.:Conds. Matter. 6, 2031-2037 (1994) Z Mazurak, A Garcia, C Fouassier, J. Phys.:Conds. Matter. 6, 2031-2037 (1994)
18.
go back to reference K. Rajamohan Reddy, V. Aruna, T. Balaji, K. Annapuma, S. Buddhudu, Mater. Chem. Phys. 52, 157–160 (1998)CrossRef K. Rajamohan Reddy, V. Aruna, T. Balaji, K. Annapuma, S. Buddhudu, Mater. Chem. Phys. 52, 157–160 (1998)CrossRef
19.
20.
go back to reference C.R. Ronda, H. Bechtel, U. Kynast, T. Welker, J. Appl. Phys. 75, 4636–4641 (1994)CrossRef C.R. Ronda, H. Bechtel, U. Kynast, T. Welker, J. Appl. Phys. 75, 4636–4641 (1994)CrossRef
21.
23.
go back to reference J.X. Wang, X.T. Dong, Q.Z. Cui, G.X. Liu, W.S. Yu, J. Nanosci. Nanotechnol. 11, 2514–2519 (2011)CrossRef J.X. Wang, X.T. Dong, Q.Z. Cui, G.X. Liu, W.S. Yu, J. Nanosci. Nanotechnol. 11, 2514–2519 (2011)CrossRef
24.
go back to reference Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, J. Xu, J. Mater. Chem. 22, 14438–14442 (2012)CrossRef Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, J. Xu, J. Mater. Chem. 22, 14438–14442 (2012)CrossRef
26.
27.
go back to reference J.M. Deitzel, J. Kleinmeyer, D. Harris, N.C. Beck Tan, Polymer 42, 261–272 (2001)CrossRef J.M. Deitzel, J. Kleinmeyer, D. Harris, N.C. Beck Tan, Polymer 42, 261–272 (2001)CrossRef
29.
30.
go back to reference W.W. Ma, X.T. Dong, J.X. Wang, W.S. Yu, Guixia Liu. J. Mater. Sci. 48, 2557–2565 (2013)CrossRef W.W. Ma, X.T. Dong, J.X. Wang, W.S. Yu, Guixia Liu. J. Mater. Sci. 48, 2557–2565 (2013)CrossRef
31.
go back to reference X.T. Dong, L. Lui, J.X. Wang, G.X. Liu, Chem. J. Chin. U. 31, 20–25 (2010) X.T. Dong, L. Lui, J.X. Wang, G.X. Liu, Chem. J. Chin. U. 31, 20–25 (2010)
32.
go back to reference G.Q. Gai, L.Y. Wang, X.T. Dong, C.M. Zheng, W.S. Yu, J.X. Wang, X.F. Xiao, J. Nanopart. Res. 15, 1539–1547 (2013)CrossRef G.Q. Gai, L.Y. Wang, X.T. Dong, C.M. Zheng, W.S. Yu, J.X. Wang, X.F. Xiao, J. Nanopart. Res. 15, 1539–1547 (2013)CrossRef
33.
go back to reference D. Li, X.T. Dong, W.S. Yu, J.X. Wang, G. Liu, J. Nanopart. Res. 15, 1704–1714 (2013)CrossRef D. Li, X.T. Dong, W.S. Yu, J.X. Wang, G. Liu, J. Nanopart. Res. 15, 1704–1714 (2013)CrossRef
Metadata
Title
Study on terbium doped lanthanum oxybromide luminescent nanoribbons and nanofibers
Authors
Wenwen Ma
Xiangting Dong
Jinxian Wang
Wensheng Yu
Guixia Liu
Publication date
01-04-2014
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 4/2014
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-014-1780-y

Other articles of this Issue 4/2014

Journal of Materials Science: Materials in Electronics 4/2014 Go to the issue