Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 5/2020

20-05-2020

Study on the Microstructure and Fatigue Behavior of a Laser-Welded Ni-Based Alloy Manufactured by Selective Laser Melting Method

Authors: Yu Zhang, XiaoAn Hu, Yun Jiang

Published in: Journal of Materials Engineering and Performance | Issue 5/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Low-cycle fatigue and creep-fatigue tests were conducted at 815 °C on laser-welded, selective laser melted (SLM) Inconel 625 test specimens. The results showed that the microstructure of the welding zone was mainly composed of columnar dendrites, which grew epitaxially from the weld line and exhibited better fatigue and durability resistance than the non-welded SLM alloy. The low-cycle fatigue life and creep-fatigue life decreased with increasing test stress. Both fatigue and creep-fatigue properties were better for laser-welded SLM Inconel 625 specimens than non-welded specimens. High-density intergranular cracks formed in the \(\gamma\) matrix at base material, which contained many intergranular precipitates. Precipitation of intermetallic \(\delta\), \(\gamma^{\prime\prime}\), and the intergranular carbides was responsible for the higher hardness of the fatigue and creep-fatigue specimens.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C.A. Badrish, N. Kotkunde, G. Mahalle, S.K. Singh, and K. Mahesh, Analysis of Hot Anisotropic Tensile Flow Stress and Strain Hardening Behavior for Inconel 625 Alloy, J. Mater. Eng. Perform., 2019, 28(12), p 7537–7553CrossRef C.A. Badrish, N. Kotkunde, G. Mahalle, S.K. Singh, and K. Mahesh, Analysis of Hot Anisotropic Tensile Flow Stress and Strain Hardening Behavior for Inconel 625 Alloy, J. Mater. Eng. Perform., 2019, 28(12), p 7537–7553CrossRef
2.
go back to reference C.A. Badrish, N. Kotkunde, O. Salunke, and S. Kumar Singh, Study of Anisotropic Material Behavior for Inconel 625 Alloy at Elevated Temperatures, Mater. Today Proc., 2019, 18, p 2760–2766CrossRef C.A. Badrish, N. Kotkunde, O. Salunke, and S. Kumar Singh, Study of Anisotropic Material Behavior for Inconel 625 Alloy at Elevated Temperatures, Mater. Today Proc., 2019, 18, p 2760–2766CrossRef
3.
go back to reference V. Shankar, K.B.S. Rao, and S.L. Mannan, Microstructure and Mechanical Properties of Inconel 625 Superalloy, J. Nucl. Mater., 2001, 288(2), p 222–232CrossRef V. Shankar, K.B.S. Rao, and S.L. Mannan, Microstructure and Mechanical Properties of Inconel 625 Superalloy, J. Nucl. Mater., 2001, 288(2), p 222–232CrossRef
4.
go back to reference K. Inaekyan, A. Kreitcberg, S. Turenne, and V. Brailovski, Microstructure and Mechanical Properties of Laser Powder Bed-Fused IN625 Alloy, Mater. Sci. Eng. A, 2019, 768, p 138481CrossRef K. Inaekyan, A. Kreitcberg, S. Turenne, and V. Brailovski, Microstructure and Mechanical Properties of Laser Powder Bed-Fused IN625 Alloy, Mater. Sci. Eng. A, 2019, 768, p 138481CrossRef
5.
go back to reference N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, and R. Hague, 3D Printing of Aluminium Alloys: Additive Manufacturing of Aluminium Alloys Using Selective Laser Melting, Prog. Mater Sci., 2019, 106, p 100578CrossRef N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, and R. Hague, 3D Printing of Aluminium Alloys: Additive Manufacturing of Aluminium Alloys Using Selective Laser Melting, Prog. Mater Sci., 2019, 106, p 100578CrossRef
6.
go back to reference J. Zhang, B. Song, Q. Wei, D. Bourell, and Y. Shi, A Review of Selective Laser Melting of Aluminum Alloys: Processing, Microstructure, Property and Developing Trends, J. Mater. Sci. Technol., 2019, 35(2), p 270–284CrossRef J. Zhang, B. Song, Q. Wei, D. Bourell, and Y. Shi, A Review of Selective Laser Melting of Aluminum Alloys: Processing, Microstructure, Property and Developing Trends, J. Mater. Sci. Technol., 2019, 35(2), p 270–284CrossRef
7.
go back to reference L. Xi, S. Chen, M. Wei, J. Liang, C. Liu, and M. Wang, Microstructural Evolution and Properties of 24CrNiMoY Alloy Steel Fabricated by Selective Laser Melting, J. Mater. Eng. Perform., 2019, 28(9), p 5521–5532CrossRef L. Xi, S. Chen, M. Wei, J. Liang, C. Liu, and M. Wang, Microstructural Evolution and Properties of 24CrNiMoY Alloy Steel Fabricated by Selective Laser Melting, J. Mater. Eng. Perform., 2019, 28(9), p 5521–5532CrossRef
9.
go back to reference H. Shipley, D. McDonnell, M. Culleton, R. Coull, R. Lupoi, G. O’Donnell, and D. Trimble, Optimisation of Process Parameters to Address Fundamental Challenges During Selective Laser Melting of Ti-6Al-4 V: A Review, Int. J. Mach. Tool. Manu., 2018, 128, p 1–20CrossRef H. Shipley, D. McDonnell, M. Culleton, R. Coull, R. Lupoi, G. O’Donnell, and D. Trimble, Optimisation of Process Parameters to Address Fundamental Challenges During Selective Laser Melting of Ti-6Al-4 V: A Review, Int. J. Mach. Tool. Manu., 2018, 128, p 1–20CrossRef
10.
go back to reference L. Zhou, T. Yuan, J. Tang, J. He, and R. Li, Mechanical and Corrosion Behavior of Titanium Alloys Additively Manufactured by Selective Laser Melting—A Comparison Between Nearly β Titanium, α Titanium and α + β Titanium, Opt. Laser Technol., 2019, 119, p 105625CrossRef L. Zhou, T. Yuan, J. Tang, J. He, and R. Li, Mechanical and Corrosion Behavior of Titanium Alloys Additively Manufactured by Selective Laser Melting—A Comparison Between Nearly β Titanium, α Titanium and α + β Titanium, Opt. Laser Technol., 2019, 119, p 105625CrossRef
11.
go back to reference G.E. Bean, T.D. McLouth, D.B. Witkin, S.D. Sitzman, P.M. Adams, and R.J. Zaldivar, Build Orientation Effects on Texture and Mechanical Properties of Selective Laser Melting Inconel 718, J. Mater. Eng. Perform., 2019, 28(4), p 1942–1949CrossRef G.E. Bean, T.D. McLouth, D.B. Witkin, S.D. Sitzman, P.M. Adams, and R.J. Zaldivar, Build Orientation Effects on Texture and Mechanical Properties of Selective Laser Melting Inconel 718, J. Mater. Eng. Perform., 2019, 28(4), p 1942–1949CrossRef
12.
go back to reference S. Periane, A. Duchosal, S. Vaudreuil, H. Chibane, A. Morandeau, J. Cormier, and R. Leroy, Machining Influence on the Fatigue Resistance of Inconel 718 Fabricated by Selective Laser Melting (SLM), Proc. Struct. Integr., 2019, 19, p 415–422CrossRef S. Periane, A. Duchosal, S. Vaudreuil, H. Chibane, A. Morandeau, J. Cormier, and R. Leroy, Machining Influence on the Fatigue Resistance of Inconel 718 Fabricated by Selective Laser Melting (SLM), Proc. Struct. Integr., 2019, 19, p 415–422CrossRef
13.
go back to reference C. Pleass and S. Jothi, Influence of Powder Characteristics and Additive Manufacturing Process Parameters on the Microstructure and Mechanical Behaviour of Inconel 625 Fabricated by Selective Laser Melting, Addit. Manuf., 2018, 24, p 419–431 C. Pleass and S. Jothi, Influence of Powder Characteristics and Additive Manufacturing Process Parameters on the Microstructure and Mechanical Behaviour of Inconel 625 Fabricated by Selective Laser Melting, Addit. Manuf., 2018, 24, p 419–431
14.
go back to reference X. Hu, Z. Xue, G. Zhao, J. Yun, D. Shi, and X. Yang, Laser Welding of a Selective Laser Melted Ni-base Superalloy: Microstructure and High Temperature Mechanical Property, Mater. Sci. Eng., A, 2019, 745, p 335–345CrossRef X. Hu, Z. Xue, G. Zhao, J. Yun, D. Shi, and X. Yang, Laser Welding of a Selective Laser Melted Ni-base Superalloy: Microstructure and High Temperature Mechanical Property, Mater. Sci. Eng., A, 2019, 745, p 335–345CrossRef
15.
go back to reference S. Li, Q. Wei, Y. Shi, Z. Zhu, and D. Zhang, Microstructure Characteristics of Inconel 625 Superalloy Manufactured by Selective Laser Melting, J. Mater. Sci. Technol., 2015, 31(9), p 946–952CrossRef S. Li, Q. Wei, Y. Shi, Z. Zhu, and D. Zhang, Microstructure Characteristics of Inconel 625 Superalloy Manufactured by Selective Laser Melting, J. Mater. Sci. Technol., 2015, 31(9), p 946–952CrossRef
16.
go back to reference P. Wang, B. Zhang, C.C. Tan, S. Raghavan, Y.-F. Lim, C.-N. Sun, J. Wei, and D. Chi, Microstructural Characteristics and Mechanical Properties of Carbon Nanotube Reinforced Inconel 625 Parts Fabricated by Selective Laser Melting, Mater. Design., 2016, 112, p 290–299CrossRef P. Wang, B. Zhang, C.C. Tan, S. Raghavan, Y.-F. Lim, C.-N. Sun, J. Wei, and D. Chi, Microstructural Characteristics and Mechanical Properties of Carbon Nanotube Reinforced Inconel 625 Parts Fabricated by Selective Laser Melting, Mater. Design., 2016, 112, p 290–299CrossRef
17.
go back to reference L. Chao, R. White, X.Y. Fang, M. Weaver, and Y.B. Guo, Microstructure Evolution Characteristics of Inconel 625 Alloy from Selective Laser Melting to Heat Treatment, Mater. Sci. Eng., A, 2017, 705, p 20–31CrossRef L. Chao, R. White, X.Y. Fang, M. Weaver, and Y.B. Guo, Microstructure Evolution Characteristics of Inconel 625 Alloy from Selective Laser Melting to Heat Treatment, Mater. Sci. Eng., A, 2017, 705, p 20–31CrossRef
18.
go back to reference J.P. Oliveira, T.G. Santos, and R.M. Miranda, Revisiting Fundamental Welding Concepts to Improve Additive Manufacturing: From Theory to Practice, Prog. Mater Sci., 2020, 107, p 100590CrossRef J.P. Oliveira, T.G. Santos, and R.M. Miranda, Revisiting Fundamental Welding Concepts to Improve Additive Manufacturing: From Theory to Practice, Prog. Mater Sci., 2020, 107, p 100590CrossRef
19.
go back to reference K.D. Ramkumar, S.G. Pattapu, S. Vangaveeti, K. Kothari, R. Sridhar, N. Arivazhagan, and P. Kuppan, Studies on Microstructure and Mechanical Properties of Keyhole Mode Nd:YAG Laser Welded Inconel 625 and Duplex Stainless Steel, SAF 2205, J. Mater. Res., 2015, 30, p 1–11 K.D. Ramkumar, S.G. Pattapu, S. Vangaveeti, K. Kothari, R. Sridhar, N. Arivazhagan, and P. Kuppan, Studies on Microstructure and Mechanical Properties of Keyhole Mode Nd:YAG Laser Welded Inconel 625 and Duplex Stainless Steel, SAF 2205, J. Mater. Res., 2015, 30, p 1–11
20.
go back to reference Y.S. Park, J.J. Choi, and D.H. Bae, Fracture Mechanical Assessment of the Corrosion Fatigue Characteristics at the Low Fatigue Limit of a Multi-pass Welded Ni-based Alloy 617, Procedia Mater. Sci., 2014, 3, p 1530–1535CrossRef Y.S. Park, J.J. Choi, and D.H. Bae, Fracture Mechanical Assessment of the Corrosion Fatigue Characteristics at the Low Fatigue Limit of a Multi-pass Welded Ni-based Alloy 617, Procedia Mater. Sci., 2014, 3, p 1530–1535CrossRef
21.
go back to reference K.G. Kumar, K.D. Ramkumar, and N. Arivazhagan, Characterization of Metallurgical and Mechanical Properties on the Multi-pass Welding of Inconel 625 and AISI, 316L, J. Mech. Sci. Technol., 2015, 29(3), p 1039–1047CrossRef K.G. Kumar, K.D. Ramkumar, and N. Arivazhagan, Characterization of Metallurgical and Mechanical Properties on the Multi-pass Welding of Inconel 625 and AISI, 316L, J. Mech. Sci. Technol., 2015, 29(3), p 1039–1047CrossRef
22.
go back to reference C.A. Biffi, J. Fiocchi, and A. Tuissi, Laser Weldability of AlSi10Mg Alloy Produced by Selective Laser Melting: Microstructure and Mechanical Behavior, J. Mater. Eng. Perform., 2019, 28(11), p 6714–6719CrossRef C.A. Biffi, J. Fiocchi, and A. Tuissi, Laser Weldability of AlSi10Mg Alloy Produced by Selective Laser Melting: Microstructure and Mechanical Behavior, J. Mater. Eng. Perform., 2019, 28(11), p 6714–6719CrossRef
23.
go back to reference F. Caiazzo, V. Alfieri, F. Cardaropoli, and V. Sergi, Investigation on Edge Joints of Inconel 625 Sheets Processed with Laser Welding, Opt. Laser Technol., 2017, 93, p 180–186CrossRef F. Caiazzo, V. Alfieri, F. Cardaropoli, and V. Sergi, Investigation on Edge Joints of Inconel 625 Sheets Processed with Laser Welding, Opt. Laser Technol., 2017, 93, p 180–186CrossRef
24.
go back to reference J.R. Poulin, A. Kreitcberg, P. Terriault, and V. Brailovski, Fatigue Strength Prediction of Laser Powder Bed Fusion Processed Inconel 625 Specimens with Intentionally-Seeded Porosity: Feasibility Study, Int. J. Fatigue, 2020, 132, p 105394CrossRef J.R. Poulin, A. Kreitcberg, P. Terriault, and V. Brailovski, Fatigue Strength Prediction of Laser Powder Bed Fusion Processed Inconel 625 Specimens with Intentionally-Seeded Porosity: Feasibility Study, Int. J. Fatigue, 2020, 132, p 105394CrossRef
25.
go back to reference M. Tang and P.C. Pistorius, Fatigue Life Prediction for AlSi10Mg Components Produced by Selective Laser Melting, Int. J. Fatigue, 2019, 125, p 479–490CrossRef M. Tang and P.C. Pistorius, Fatigue Life Prediction for AlSi10Mg Components Produced by Selective Laser Melting, Int. J. Fatigue, 2019, 125, p 479–490CrossRef
26.
go back to reference G. Qian, Z. Jian, X. Pan, and F. Berto, In-situ Investigation on Fatigue Behaviors of Ti-6Al-4 V Manufactured by Selective Laser Melting, Int. J. Fatigue, 2020, 133, p 105424CrossRef G. Qian, Z. Jian, X. Pan, and F. Berto, In-situ Investigation on Fatigue Behaviors of Ti-6Al-4 V Manufactured by Selective Laser Melting, Int. J. Fatigue, 2020, 133, p 105424CrossRef
27.
go back to reference Y. Wu and R. Bao, Fatigue Crack Tip Strain Evolution and Crack Growth Prediction Under Single Overload in Laser Melting Deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Titanium Alloy, Int. J. Fatigue, 2018, 116, p 462–472CrossRef Y. Wu and R. Bao, Fatigue Crack Tip Strain Evolution and Crack Growth Prediction Under Single Overload in Laser Melting Deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Titanium Alloy, Int. J. Fatigue, 2018, 116, p 462–472CrossRef
28.
go back to reference M. Seifi, A. Salem, J. Beuth, O. Harrysson, J.J. Lewandowski, and A. Erratum, Overview of Materials Qualification Needs for Metal Additive Manufacturing, JOM, 2016, 68(5), p 1492CrossRef M. Seifi, A. Salem, J. Beuth, O. Harrysson, J.J. Lewandowski, and A. Erratum, Overview of Materials Qualification Needs for Metal Additive Manufacturing, JOM, 2016, 68(5), p 1492CrossRef
29.
go back to reference M. Seifi, M. Gorelik, J. Waller, N. Hrabe, N. Shamsaei, S. Daniewicz, and J.J. Lewandowski, Progress Towards Metal Additive Manufacturing Standardization to Support Qualification and Certification, JOM, 2017, 69(3), p 439–455CrossRef M. Seifi, M. Gorelik, J. Waller, N. Hrabe, N. Shamsaei, S. Daniewicz, and J.J. Lewandowski, Progress Towards Metal Additive Manufacturing Standardization to Support Qualification and Certification, JOM, 2017, 69(3), p 439–455CrossRef
30.
go back to reference Q.G. Wang, P.N. Crepeau, C.J. Davidson, and J.R. Griffiths, Oxide Films, Pores and the Fatigue Lives of Cast Aluminum Alloys, Metall. Mater. Trans. B, 2006, 37(6), p 887–895CrossRef Q.G. Wang, P.N. Crepeau, C.J. Davidson, and J.R. Griffiths, Oxide Films, Pores and the Fatigue Lives of Cast Aluminum Alloys, Metall. Mater. Trans. B, 2006, 37(6), p 887–895CrossRef
31.
go back to reference J.P. Oliveira, Z. Zeng, C. Andrei, F.M. Braz Fernandes, R.M. Miranda, A.J. Ramirez, T. Omori, and N. Zhou, Dissimilar Laser Welding of Superelastic NiTi and CuAlMn Shape Memory Alloys, Mater. Design, 2017, 128, p 166–175CrossRef J.P. Oliveira, Z. Zeng, C. Andrei, F.M. Braz Fernandes, R.M. Miranda, A.J. Ramirez, T. Omori, and N. Zhou, Dissimilar Laser Welding of Superelastic NiTi and CuAlMn Shape Memory Alloys, Mater. Design, 2017, 128, p 166–175CrossRef
32.
go back to reference Y.L. Hu, X. Lin, Y.L. Li, S.Y. Zhang, X.H. Gao, F.G. Liu, X. Li, and W.D. Huang, Plastic Deformation Behavior and Dynamic Recrystallization of Inconel 625 Superalloy Fabricated by Directed Energy Deposition, Mater. Design., 2020, 186, p 108359CrossRef Y.L. Hu, X. Lin, Y.L. Li, S.Y. Zhang, X.H. Gao, F.G. Liu, X. Li, and W.D. Huang, Plastic Deformation Behavior and Dynamic Recrystallization of Inconel 625 Superalloy Fabricated by Directed Energy Deposition, Mater. Design., 2020, 186, p 108359CrossRef
33.
go back to reference R.J. Goldstein, E.R.G. Eckert, W.E. Ibele, S.V. Patankar, T.W. Simon, T.H. Kuehn, P.J. Strykowski, K.K. Tamma, A. Bar-Cohen, J.V.R. Heberlein, J.H. Davidson, J. Bischof, F.A. Kulacki, U. Kortshagen, and S. Garrick, Heat Transfer—A Review of 2000 Literature, Int. J. Heat. Mass. Tran., 2002, 45(14), p 2853–2957CrossRef R.J. Goldstein, E.R.G. Eckert, W.E. Ibele, S.V. Patankar, T.W. Simon, T.H. Kuehn, P.J. Strykowski, K.K. Tamma, A. Bar-Cohen, J.V.R. Heberlein, J.H. Davidson, J. Bischof, F.A. Kulacki, U. Kortshagen, and S. Garrick, Heat Transfer—A Review of 2000 Literature, Int. J. Heat. Mass. Tran., 2002, 45(14), p 2853–2957CrossRef
34.
go back to reference X.A. Hu, G.L. Zhao, Y. Jiang, X.F. Ma, F.C. Liu, J. Huang, and C.L. Dong, Experimental Investigation on the LCF Behavior Affected by Manufacturing Defects and Creep Damage of One Selective Laser Melting Nickel-Based Superalloy at 815 °C, Acta Metall. Sin-Engl., 2019 (in press) https://doi.org/10.1007/s40195-019-00986-0 X.A. Hu, G.L. Zhao, Y. Jiang, X.F. Ma, F.C. Liu, J. Huang, and C.L. Dong, Experimental Investigation on the LCF Behavior Affected by Manufacturing Defects and Creep Damage of One Selective Laser Melting Nickel-Based Superalloy at 815 °C, Acta Metall. Sin-Engl., 2019 (in press) https://​doi.​org/​10.​1007/​s40195-019-00986-0
35.
go back to reference A.J. Sterling, B. Torries, N. Shamsaei, S.M. Thompson, and D.W. Seely, Fatigue Behavior and Failure Mechanisms of Direct Laser Deposited Ti–6Al–4V, Mater. Sci. Eng., A, 2016, 655, p 100–112CrossRef A.J. Sterling, B. Torries, N. Shamsaei, S.M. Thompson, and D.W. Seely, Fatigue Behavior and Failure Mechanisms of Direct Laser Deposited Ti–6Al–4V, Mater. Sci. Eng., A, 2016, 655, p 100–112CrossRef
36.
go back to reference Z.H. Jiao, L.M. Lei, H.C. Yu, F. Xu, R.D. Xu, and X.R. Wu, Experimental Evaluation on Elevated Temperature Fatigue and Tensile Properties of one Selective Laser Melted Nickel Based Superalloy, Int. J. Fatigue, 2019, 121, p 172–180CrossRef Z.H. Jiao, L.M. Lei, H.C. Yu, F. Xu, R.D. Xu, and X.R. Wu, Experimental Evaluation on Elevated Temperature Fatigue and Tensile Properties of one Selective Laser Melted Nickel Based Superalloy, Int. J. Fatigue, 2019, 121, p 172–180CrossRef
37.
go back to reference H.H. Shi, J.S. Hou, J.T. Guo, L.Z. Zhou, M. Maldini, G. Angella, R. Donini, and D. Ripamonti, Microstructure Evolution and Its Influence on Deformation Mechanisms During Tensile Creep of DD417G Alloy, Mater. Res. Innov., 2014, 18(S4), p 319–323 H.H. Shi, J.S. Hou, J.T. Guo, L.Z. Zhou, M. Maldini, G. Angella, R. Donini, and D. Ripamonti, Microstructure Evolution and Its Influence on Deformation Mechanisms During Tensile Creep of DD417G Alloy, Mater. Res. Innov., 2014, 18(S4), p 319–323
38.
go back to reference A. Epishin and T. Link, Mechanisms of High-Temperature Creep of Nickel-Based Superalloys Under Low Applied Stresses, Philos. Mag., 2004, 84(19), p 1979–2000CrossRef A. Epishin and T. Link, Mechanisms of High-Temperature Creep of Nickel-Based Superalloys Under Low Applied Stresses, Philos. Mag., 2004, 84(19), p 1979–2000CrossRef
39.
go back to reference Y.T. Tang, P. Karamched, J. Liu, J.C. Haley, R.C. Reed, and A.J. Wilkinson, Grain Boundary Serration in Nickel Alloy Inconel 600: Quantification and Mechanisms, Acta Mater., 2019, 181, p 352–366CrossRef Y.T. Tang, P. Karamched, J. Liu, J.C. Haley, R.C. Reed, and A.J. Wilkinson, Grain Boundary Serration in Nickel Alloy Inconel 600: Quantification and Mechanisms, Acta Mater., 2019, 181, p 352–366CrossRef
Metadata
Title
Study on the Microstructure and Fatigue Behavior of a Laser-Welded Ni-Based Alloy Manufactured by Selective Laser Melting Method
Authors
Yu Zhang
XiaoAn Hu
Yun Jiang
Publication date
20-05-2020
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 5/2020
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04844-4

Other articles of this Issue 5/2020

Journal of Materials Engineering and Performance 5/2020 Go to the issue

Premium Partners