Skip to main content
Top
Published in: Metallurgist 7-8/2023

18-12-2023

Studying the Formation of the Microstructure of Powdered Steel with Trip Effect by Direct Metal Deposition

Authors: O. A. Kupriyanova, D. A. Gorlenko, M. A. Sheksheev, K. G. Pivovarova, E. M. Ognyeva, M. A. Polyakova

Published in: Metallurgist | Issue 7-8/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Additive technologies are currently considered strategically significant technologies that provide innovation- driven development of various industries. Relevant issues in the application of such technologies are the necessary microstructure of the synthesized material and the absence of defects. The results of studying the microstructure of samples produced by direct metal deposition of powdered steel with the TRIP effect are presented. Typical features of the microstructure of powdered TRIP-steel samples made by direct metal deposition and by conventional metallurgical production are established. The microstructures of samples produced by direct metal deposition of powdered TRIP steel and conventional metallurgical production technology are compared.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The direct metal deposition process was implemented at the Research Laboratory of Mechanics, Laser Processes, and Digital Production Processes of the South Ural State University (National Research University), Chelyabinsk, Russia.
 
2
Melting was done in the foundry laboratory of the Nosov Magnitogorsk State Technical University (Magnitogorsk, Russia).
 
3
The metallographic analysis was done at the Equipment Sharing Center of the Nanosteel Research Institute of the Nosov Magnitogorsk State Technical University (Magnitogorsk, Russia).
 
Literature
1.
go back to reference A. A. Popovich, “Additive technologies as breakthrough solutions for creating advanced functional materials,” Metal Sci. Heat Treat., 62, No. 775, 18–24 (2020).CrossRef A. A. Popovich, “Additive technologies as breakthrough solutions for creating advanced functional materials,” Metal Sci. Heat Treat., 62, No. 775, 18–24 (2020).CrossRef
2.
go back to reference M. A. Zlenko, A. A. Popovich, and I. N. Mutylina, Additive Technologies in Mechanical Engineering [in Russian], Izd. Sankt-Peterburg. Gos. Politekh. Univ., Saint Petersburg (2013). M. A. Zlenko, A. A. Popovich, and I. N. Mutylina, Additive Technologies in Mechanical Engineering [in Russian], Izd. Sankt-Peterburg. Gos. Politekh. Univ., Saint Petersburg (2013).
3.
go back to reference M. A. Dremukhin and V. N. Nagovitsin, “Application of additive technologies in mechanical engineering for production of formforming riggings,” Kosm. Apparay Tekhnol., 6, No. 1 (39), 21–28 (2022). M. A. Dremukhin and V. N. Nagovitsin, “Application of additive technologies in mechanical engineering for production of formforming riggings,” Kosm. Apparay Tekhnol., 6, No. 1 (39), 21–28 (2022).
4.
go back to reference Yu. V. Denisova, “Additive technologies in construction,” Stroit. Mater. Izd., 1, No. 3, 33–42 (2018). Yu. V. Denisova, “Additive technologies in construction,” Stroit. Mater. Izd., 1, No. 3, 33–42 (2018).
5.
go back to reference M. A. Kreiger, B. A. MacAllister, J. M. Wilhoit, and M. P. Case, “The current state of 3D printing for use in construction,” in: Proc. Conf. on Autonomous and Robotic Construction of Infrastructure, Ames, Iowa (2015), pp. 149–158. M. A. Kreiger, B. A. MacAllister, J. M. Wilhoit, and M. P. Case, “The current state of 3D printing for use in construction,” in: Proc. Conf. on Autonomous and Robotic Construction of Infrastructure, Ames, Iowa (2015), pp. 149–158.
6.
go back to reference A. A. Dektyarev, V. N. Morozov, and A. Ya. Yafasov, “Additive technologies in shipbuilding: Trends and legal regulation,” Morsk. Intellect. Tekhnol., No. 4-4 (46), 38–49 (2019). A. A. Dektyarev, V. N. Morozov, and A. Ya. Yafasov, “Additive technologies in shipbuilding: Trends and legal regulation,” Morsk. Intellect. Tekhnol., No. 4-4 (46), 38–49 (2019).
7.
go back to reference M. A. Sheksheev, M. A. Polyakova, A. G. Korchunov, and D. V. Konstantinov, “Analysis of trends in the development of 3D printing technologies with metal-based powder materials,” Metallurgist, 66, No. 9–10, 1282–1289 (2023).CrossRef M. A. Sheksheev, M. A. Polyakova, A. G. Korchunov, and D. V. Konstantinov, “Analysis of trends in the development of 3D printing technologies with metal-based powder materials,” Metallurgist, 66, No. 9–10, 1282–1289 (2023).CrossRef
8.
go back to reference V. V. Smirnov, V. V. Barzali, and P. V. Ladnov, “Prospects of development of additive manufacturing in the Russian industry. Experience of the Ufa State Aviation Technical University,“ Novosti Materialoved. Nauka Tetkhn., 14, No. 2, 23–27 (2015). V. V. Smirnov, V. V. Barzali, and P. V. Ladnov, “Prospects of development of additive manufacturing in the Russian industry. Experience of the Ufa State Aviation Technical University,“ Novosti Materialoved. Nauka Tetkhn., 14, No. 2, 23–27 (2015).
10.
go back to reference M. N. Ahsan, “A comparison of laser additive manufacturing using gas and plasma-atomized Ti-6Al-4V powders,” in: Innovative Developments in Virtual and Physical Prototyping, Taylor & Francis Group, London (2012), pp. 108–120. M. N. Ahsan, “A comparison of laser additive manufacturing using gas and plasma-atomized Ti-6Al-4V powders,” in: Innovative Developments in Virtual and Physical Prototyping, Taylor & Francis Group, London (2012), pp. 108–120.
11.
go back to reference A. G. Grigoryants (ed.), I. N. Shiganov, and A. I. Misyurov, Laser Processing [in Russian], Izd. Mosk. Gos. Tekhn. Univ. im. N. E. Baumana, Moscow (2006). A. G. Grigoryants (ed.), I. N. Shiganov, and A. I. Misyurov, Laser Processing [in Russian], Izd. Mosk. Gos. Tekhn. Univ. im. N. E. Baumana, Moscow (2006).
12.
go back to reference D. A. Garenskii and M. A. Polyakova, “Comparative analysis of 3D-printing methods,” Aktual. Probl. Sovr. Nauki, Tetkhn. Obraz., 13, No. 1, 16–19 (2022). D. A. Garenskii and M. A. Polyakova, “Comparative analysis of 3D-printing methods,” Aktual. Probl. Sovr. Nauki, Tetkhn. Obraz., 13, No. 1, 16–19 (2022).
13.
go back to reference Standard Terminology for Additive Manufacturing Technologies, ASTM Int 2013 (2013). Standard Terminology for Additive Manufacturing Technologies, ASTM Int 2013 (2013).
14.
go back to reference I. Ya. Georgieva, “TRIP steels — a new class of high-strength steels with high plasticity,” Metal Sci. Heat Treat., 18, No. 3, 209–218 (1976).CrossRef I. Ya. Georgieva, “TRIP steels — a new class of high-strength steels with high plasticity,” Metal Sci. Heat Treat., 18, No. 3, 209–218 (1976).CrossRef
15.
go back to reference V. F. Terent’ev, A. A. Terekhov, D. V. Prosvirnin, A. V. Konovalov, and M. A. Gol’dberg, “Mechanical properties of advanced TRIP steel used in the automotive industry,” Perpsekt. Mater., No. 11, 41–47 (2014). V. F. Terent’ev, A. A. Terekhov, D. V. Prosvirnin, A. V. Konovalov, and M. A. Gol’dberg, “Mechanical properties of advanced TRIP steel used in the automotive industry,” Perpsekt. Mater., No. 11, 41–47 (2014).
16.
go back to reference R. Kuziak, R. Kawalla, and S. Waengler, “Advanced high strength steels for automotive industry,” Arch. Civil Mech. Eng., 8, No. 2, 103–117 (2008).CrossRef R. Kuziak, R. Kawalla, and S. Waengler, “Advanced high strength steels for automotive industry,” Arch. Civil Mech. Eng., 8, No. 2, 103–117 (2008).CrossRef
18.
go back to reference E. Louvis et al., “Selective laser melting of aluminium components,” J. Mater. Process. Technol., 211, 275–284 (2011).CrossRef E. Louvis et al., “Selective laser melting of aluminium components,” J. Mater. Process. Technol., 211, 275–284 (2011).CrossRef
19.
go back to reference A. V. Dub, P. V. Petrovskii, and V. V. Cheverikin, “Studying the mechanical properties of cellular structures of 03Kh16N15M3 stainless steel depending on the parameters of a unit cell,” Chern. Metally, No. 10, 59–63 (2018). A. V. Dub, P. V. Petrovskii, and V. V. Cheverikin, “Studying the mechanical properties of cellular structures of 03Kh16N15M3 stainless steel depending on the parameters of a unit cell,” Chern. Metally, No. 10, 59–63 (2018).
20.
go back to reference Yu. D. Shchitsyn, S. A. Terent’ev, S. D. Neulybin, A. O. Artemov, and D. S. Belini, “Formation of the structure and properties of 04Kh18N9 steel in additive manufacturing of billets,” Vestn. PNIPU, Mashinostr. Materialoved., 20, No. 3, 55–62 (2018). Yu. D. Shchitsyn, S. A. Terent’ev, S. D. Neulybin, A. O. Artemov, and D. S. Belini, “Formation of the structure and properties of 04Kh18N9 steel in additive manufacturing of billets,” Vestn. PNIPU, Mashinostr. Materialoved., 20, No. 3, 55–62 (2018).
21.
go back to reference W. R. Morrow, H. Kim, I. Qi, J. Mazumder, and S. J. Skerlos, “Environmental aspects of laser-based and conventional tool and die manufacturing,” J. Clean Prod., No. 15, 932–943 (2007). W. R. Morrow, H. Kim, I. Qi, J. Mazumder, and S. J. Skerlos, “Environmental aspects of laser-based and conventional tool and die manufacturing,” J. Clean Prod., No. 15, 932–943 (2007).
22.
go back to reference H. D. Ding, Z. X. Pan, D. Cuiuri, and H. J. Li, “Wire-feed additive manufacturing of metal components: technologies, developments and future interests,” Int. J. Adv. Manuf. Technol., No. 81 (1-4), 465–481 (2015). H. D. Ding, Z. X. Pan, D. Cuiuri, and H. J. Li, “Wire-feed additive manufacturing of metal components: technologies, developments and future interests,” Int. J. Adv. Manuf. Technol., No. 81 (1-4), 465–481 (2015).
23.
go back to reference M. Dabala, M. A. Polyakov, A. G. Korchunov, D. V. Konstantinov, and M. A. Sheksheev, Method of Manufacturing a Product of Composite Structure from Powder Steel with TRIP Effect [in Russian], Patent 2787815, IPC B22F 10/22/, No. 2022113301/05(027701), appl. May 18, 2022; publ. Jan. 12, 2022; Byull No. 2. M. Dabala, M. A. Polyakov, A. G. Korchunov, D. V. Konstantinov, and M. A. Sheksheev, Method of Manufacturing a Product of Composite Structure from Powder Steel with TRIP Effect [in Russian], Patent 2787815, IPC B22F 10/22/, No. 2022113301/05(027701), appl. May 18, 2022; publ. Jan. 12, 2022; Byull No. 2.
24.
go back to reference N. V. Koptseva, M. V. Chukin, and O. A. Nikitenko, “Use of the Thixomet PRO software for quantitative analysis of the ultrafinegrain structure of low- and medium-carbon steels subjected to equal channel angular pressing,” Metal Sci. Heat Treat., 54, No. 7-8, 387–392 (2012).CrossRef N. V. Koptseva, M. V. Chukin, and O. A. Nikitenko, “Use of the Thixomet PRO software for quantitative analysis of the ultrafinegrain structure of low- and medium-carbon steels subjected to equal channel angular pressing,” Metal Sci. Heat Treat., 54, No. 7-8, 387–392 (2012).CrossRef
25.
go back to reference M. V. Chukin, R. Z. Valiev, G. I. Raab, N. V. Koptseva, and Yu. Yu. Efimova, “Studying the evolution of the structure of 20 and 45 nanosteels at critical plastic strains,” Vestn. Magnitogorsk. Gos. Tekhn. Univ. im. G. I. Nosova, No. 4, 89–93 (2007). M. V. Chukin, R. Z. Valiev, G. I. Raab, N. V. Koptseva, and Yu. Yu. Efimova, “Studying the evolution of the structure of 20 and 45 nanosteels at critical plastic strains,” Vestn. Magnitogorsk. Gos. Tekhn. Univ. im. G. I. Nosova, No. 4, 89–93 (2007).
26.
go back to reference Yu. Yu. Efimova, N. V. Koptseva, and O. A. Nikitenko, “Studying the state of the carbide phase after nanostructurization followed by drawing of low-carbon steel,” Vestn. Magnitogorsk. Gos. Tekhn. Univ. im. G. I. Nosova, No. 3, 45–48 (2009). Yu. Yu. Efimova, N. V. Koptseva, and O. A. Nikitenko, “Studying the state of the carbide phase after nanostructurization followed by drawing of low-carbon steel,” Vestn. Magnitogorsk. Gos. Tekhn. Univ. im. G. I. Nosova, No. 3, 45–48 (2009).
Metadata
Title
Studying the Formation of the Microstructure of Powdered Steel with Trip Effect by Direct Metal Deposition
Authors
O. A. Kupriyanova
D. A. Gorlenko
M. A. Sheksheev
K. G. Pivovarova
E. M. Ognyeva
M. A. Polyakova
Publication date
18-12-2023
Publisher
Springer US
Published in
Metallurgist / Issue 7-8/2023
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-023-01587-0

Other articles of this Issue 7-8/2023

Metallurgist 7-8/2023 Go to the issue

Premium Partners