Skip to main content
Top
Published in: Microsystem Technologies 9/2017

12-12-2015 | Technical Paper

SU-8 microchannels for live cell dielectrophoresis improvements

Authors: Pavel Fikar, Gaelle Lissorgues, Lionel Rousseau, Olivier Francais, Bruno Le Pioufle, Feriel S. Hamdi, Vjaceslav Georgiev, Daniel Georgiev

Published in: Microsystem Technologies | Issue 9/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work a novel highly precise SU-8 fabrication technology is employed to construct microfluidic devices for sensitive dielectrophoretic (DEP) manipulation of budding yeast cells. A benchmark microfluidic live cell sorting system is presented, and the effect of microchannel misalignment above electrode topologies on live cell DEP is discussed in detail. Simplified model of budding Saccharomyces cerevisiae yeast cell is presented and validated experimentally in fabricated microfluidic devices. A novel fabrication process enabling rapid prototyping of microfluidic devices with well-aligned integrated electrodes is presented and the process flow is described. Identical devices were produced with standard soft-lithography processes. In comparison to standard PDMS based soft-lithography, an SU-8 layer was used to construct the microchannel walls sealed by a flat sheet of PDMS to obtain the microfluidic channels. Direct bonding of PDMS to SU-8 surface was achieved by efficient wet chemical silanization combined with oxygen plasma treatment of the contact surface. The presented fabrication process significantly improved the alignment of the microstructures. While, according to the benchmark study, the standard PDMS procedure fell well outside the range required for reasonable cell sorting efficiency. In addition, PDMS delamination above electrode topologies was significantly decreased over standard soft-lithography devices. The fabrication time and costs of the proposed methodology were found to be roughly the same.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alshareef M, Metrakos N, Juarez Perez E, Azer F, Yang F, Yang X, Wang G (2013) Separation of tumor cells with dielectrophoresis-based microfluidic chip. Biomicrofluidics 7(1):11803. doi:10.1063/1.4774312 Alshareef M, Metrakos N, Juarez Perez E, Azer F, Yang F, Yang X, Wang G (2013) Separation of tumor cells with dielectrophoresis-based microfluidic chip. Biomicrofluidics 7(1):11803. doi:10.​1063/​1.​4774312
go back to reference Balciunas E, Jonusauskas L, Valuckas V, Baltriukiene D, Bukelskiene V, Gadonas R, Malinauskas M (2012) Lithographic microfabrication of biocompatible polymers for tissue engineering and lab-on-a-chip applications. In: Proceedings of the SPIE 8427, Biophotonics: photonic solutions for better health care III, 84271X (June 1, 2012). doi:10.1117/12.923042 Balciunas E, Jonusauskas L, Valuckas V, Baltriukiene D, Bukelskiene V, Gadonas R, Malinauskas M (2012) Lithographic microfabrication of biocompatible polymers for tissue engineering and lab-on-a-chip applications. In: Proceedings of the SPIE 8427, Biophotonics: photonic solutions for better health care III, 84271X (June 1, 2012). doi:10.​1117/​12.​923042
go back to reference Beech JP (2012) Sorting cells by size, shape and deformability. Lab Chip 12(6):1048–1051CrossRef Beech JP (2012) Sorting cells by size, shape and deformability. Lab Chip 12(6):1048–1051CrossRef
go back to reference Chang HS (2006) Electro-kinetics: a viable micro-fluidic platform for miniature diagnostic kits. Can J Chem Eng 84(2):146–160CrossRef Chang HS (2006) Electro-kinetics: a viable micro-fluidic platform for miniature diagnostic kits. Can J Chem Eng 84(2):146–160CrossRef
go back to reference Chen T (2013) Fabrication and package of microfluidic dielectrophoretic chip for trapping two particles. Ind Electron Appl (ICIEA), 2013 8th IEEE Conference on IEEE Chen T (2013) Fabrication and package of microfluidic dielectrophoretic chip for trapping two particles. Ind Electron Appl (ICIEA), 2013 8th IEEE Conference on IEEE
go back to reference Chen Y, Li P, Huang PH, Xie Y, Mai JD, Wang L, Nguyen NT, Huang TJ (2014) Rare cell isolation and analysis in microfluidics. Lab Chip 14(4):626–645. doi:10.1039/c3lc90136j Chen Y, Li P, Huang PH, Xie Y, Mai JD, Wang L, Nguyen NT, Huang TJ (2014) Rare cell isolation and analysis in microfluidics. Lab Chip 14(4):626–645. doi:10.​1039/​c3lc90136j
go back to reference Cho SH, Lu HM, Cauller L, Romero-Ortega MI, Lee JB, Hughes GA (2008) Biocompatible Su-8-based microprobes for recording neural spike signals from regenerated peripheral nerve fibers. IEEE Sens J 8(11):1830–1837 Cho SH, Lu HM, Cauller L, Romero-Ortega MI, Lee JB, Hughes GA (2008) Biocompatible Su-8-based microprobes for recording neural spike signals from regenerated peripheral nerve fibers. IEEE Sens J 8(11):1830–1837
go back to reference del Campo A, Greiner C (2007) Su-8: a photoresist for high-aspect-ratio and 3d submicron lithography. J Micromech Microeng 17(6):R81–R95 del Campo A, Greiner C (2007) Su-8: a photoresist for high-aspect-ratio and 3d submicron lithography. J Micromech Microeng 17(6):R81–R95
go back to reference Demierre N (2008) Focusing and continuous separation of cells in a microfluidic device using lateral dielectrophoresis. Sens Actuat B Chem 132(2):388–396CrossRef Demierre N (2008) Focusing and continuous separation of cells in a microfluidic device using lateral dielectrophoresis. Sens Actuat B Chem 132(2):388–396CrossRef
go back to reference Destgeer G (2013) Continuous separation of particles in a pdms microfluidic channel via travelling surface acoustic waves (tsaw). Lab Chip 13(21):4210–4216CrossRef Destgeer G (2013) Continuous separation of particles in a pdms microfluidic channel via travelling surface acoustic waves (tsaw). Lab Chip 13(21):4210–4216CrossRef
go back to reference Francais O (2009) 3d field focusing and defocusing geometries for cell trapping on a chip. Des Test Integr Packag MEMS MOEMS (2009) EMS/MOEMS’09. Symp IEEE Francais O (2009) 3d field focusing and defocusing geometries for cell trapping on a chip. Des Test Integr Packag MEMS MOEMS (2009) EMS/MOEMS’09. Symp IEEE
go back to reference Gascoyne PRC (2004) Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments. Proc IEEE Inst Electr Electron Eng 92(1):22–42CrossRef Gascoyne PRC (2004) Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments. Proc IEEE Inst Electr Electron Eng 92(1):22–42CrossRef
go back to reference Gascoyne PRC (2009) Isolation of rare cells from cell mixtures by dielectrophoresis. Electrophoresis 30(8):1388–1398CrossRef Gascoyne PRC (2009) Isolation of rare cells from cell mixtures by dielectrophoresis. Electrophoresis 30(8):1388–1398CrossRef
go back to reference Ghubade A (2009) Dielectrophoresis assisted concentration of micro-particles and their rapid quantitation based on optical means. Biomed Microdevices 11(5):987–995CrossRef Ghubade A (2009) Dielectrophoresis assisted concentration of micro-particles and their rapid quantitation based on optical means. Biomed Microdevices 11(5):987–995CrossRef
go back to reference Hamdi FS (2014) Low temperature irreversible poly (dimethyl) siloxane packaging of silanized su-8 microchannels: Characterization and lab-on-chip application. IEEE 1015–1024 Hamdi FS (2014) Low temperature irreversible poly (dimethyl) siloxane packaging of silanized su-8 microchannels: Characterization and lab-on-chip application. IEEE 1015–1024
go back to reference Hur SC (2011) High-throughput size-based rare cell enrichment using microscale vortices. Biomicrofluidics 5(2):022206CrossRef Hur SC (2011) High-throughput size-based rare cell enrichment using microscale vortices. Biomicrofluidics 5(2):022206CrossRef
go back to reference Jones TB (2003) Basic theory of dielectrophoresis and electrorotation. IEEE Eng Med Biol Mag 22(6):34–42 Jones TB (2003) Basic theory of dielectrophoresis and electrorotation. IEEE Eng Med Biol Mag 22(6):34–42
go back to reference Kralj JG (2006) Continuous dielectrophoretic size-based particle sorting. Anal Chem 78(14):5019–5025CrossRef Kralj JG (2006) Continuous dielectrophoretic size-based particle sorting. Anal Chem 78(14):5019–5025CrossRef
go back to reference Krylov SN (2000) Single-cell analysis using capillary electrophoresis: Influence of surface support properties on cell injection into the capillary. Electrophoresis 21:767–773CrossRef Krylov SN (2000) Single-cell analysis using capillary electrophoresis: Influence of surface support properties on cell injection into the capillary. Electrophoresis 21:767–773CrossRef
go back to reference Kuncova-Kallio J (2006) Pdms and its suitability for analytical microfluidic devices. In: Proceedings of the 28th IEEE EMBS Annual International Conference Kuncova-Kallio J (2006) Pdms and its suitability for analytical microfluidic devices. In: Proceedings of the 28th IEEE EMBS Annual International Conference
go back to reference Kwon J (2009) Su-8-based immunoisolative microcontainer with nanoslots defined by nanoimprint lithography. J Vac Sci Technol B 27(6):2795–2800CrossRef Kwon J (2009) Su-8-based immunoisolative microcontainer with nanoslots defined by nanoimprint lithography. J Vac Sci Technol B 27(6):2795–2800CrossRef
go back to reference Lee GB (2001) Hydrodynamic focusing for a micromachined flow cytometer. J Fluids Eng 123(3):672–679CrossRef Lee GB (2001) Hydrodynamic focusing for a micromachined flow cytometer. J Fluids Eng 123(3):672–679CrossRef
go back to reference Lee JN (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75:6544–6554CrossRef Lee JN (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75:6544–6554CrossRef
go back to reference Lee SW (2008) Shrinkage ratio of pdms and its alignment method for the wafer level process. Microsyst Technol 14(2):205–208CrossRef Lee SW (2008) Shrinkage ratio of pdms and its alignment method for the wafer level process. Microsyst Technol 14(2):205–208CrossRef
go back to reference Lei KF (2014) Materials and fabrication techniques for nano-and microfluidic devices. Microfluid Detect Sci Lab Chip Technol 1–28 Lei KF (2014) Materials and fabrication techniques for nano-and microfluidic devices. Microfluid Detect Sci Lab Chip Technol 1–28
go back to reference Łopacińska JM, Emnéus J, Dufva M (2013) Poly(dimethylsiloxane) (PDMS) affects gene expression in PC12 cells differentiating into neuronal-like cells. PLoS ONE 8(1):e53107. doi:10.1371/journal.pone.0053107 Łopacińska JM, Emnéus J, Dufva M (2013) Poly(dimethylsiloxane) (PDMS) affects gene expression in PC12 cells differentiating into neuronal-like cells. PLoS ONE 8(1):e53107. doi:10.​1371/​journal.​pone.​0053107
go back to reference McDonald JC (2002) Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35(7):491–499CrossRef McDonald JC (2002) Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35(7):491–499CrossRef
go back to reference Noorjannah IS (2012) The quadrupole microelectrode design on a multilayer biochip for dielectrophoretic trapping of single cells. Microelectron Eng 97:369–374CrossRef Noorjannah IS (2012) The quadrupole microelectrode design on a multilayer biochip for dielectrophoretic trapping of single cells. Microelectron Eng 97:369–374CrossRef
go back to reference Pethig R (2010) Review article—dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4(2):022811. doi:10.1063/1.3456626 Pethig R (2010) Review article—dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4(2):022811. doi:10.​1063/​1.​3456626
go back to reference Pratt ED (2011) Rare cell capture in microfluidic devices. Chem Eng Sci 66(7):1508–1522CrossRef Pratt ED (2011) Rare cell capture in microfluidic devices. Chem Eng Sci 66(7):1508–1522CrossRef
go back to reference Shiine Y (2010) Soft-lithographic methods for the fabrication of dielectrophoretic devices using molds by proton beam writing. Microelectron Eng 87(5):835–838CrossRef Shiine Y (2010) Soft-lithographic methods for the fabrication of dielectrophoretic devices using molds by proton beam writing. Microelectron Eng 87(5):835–838CrossRef
go back to reference Tay S (2010) Single-cell nf-kb dynamics reveal digital activation and analogue information processing. Nature 466:267–271CrossRef Tay S (2010) Single-cell nf-kb dynamics reveal digital activation and analogue information processing. Nature 466:267–271CrossRef
go back to reference Vahey MD (2008) An equilibrium method for continuous-flow cell sorting using dielectrophoresis. Anal Chem 80(9):3135–3143CrossRef Vahey MD (2008) An equilibrium method for continuous-flow cell sorting using dielectrophoresis. Anal Chem 80(9):3135–3143CrossRef
go back to reference Valero A (2010) A unified approach to dielectric single cell analysis: Impedance and dielectrophoretic force spectroscopy. Lab Chip 17:2216–2225CrossRef Valero A (2010) A unified approach to dielectric single cell analysis: Impedance and dielectrophoretic force spectroscopy. Lab Chip 17:2216–2225CrossRef
go back to reference Wang L (2009) Su-8 microstructure for quasi-three-dimensional cell-based biosensing. Sens Actuators B Chem 140:349–355CrossRef Wang L (2009) Su-8 microstructure for quasi-three-dimensional cell-based biosensing. Sens Actuators B Chem 140:349–355CrossRef
go back to reference Wong I (2009) Surface molecular property modifications for poly(dimethylsiloxane) (pdms) based microfluidic devices. Microfluid Nanofluid 7:291–306CrossRef Wong I (2009) Surface molecular property modifications for poly(dimethylsiloxane) (pdms) based microfluidic devices. Microfluid Nanofluid 7:291–306CrossRef
go back to reference Yang SM (2011) Precise cell trapping with structure-confined dielectrophoresis. In: Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International. IEEE Yang SM (2011) Precise cell trapping with structure-confined dielectrophoresis. In: Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International. IEEE
go back to reference Yi F (2014) Design, fabrication and experiment of microfluidic cell culture for cancer and neurobiology research. Doctoral Thesis, University of East Paris Yi F (2014) Design, fabrication and experiment of microfluidic cell culture for cancer and neurobiology research. Doctoral Thesis, University of East Paris
Metadata
Title
SU-8 microchannels for live cell dielectrophoresis improvements
Authors
Pavel Fikar
Gaelle Lissorgues
Lionel Rousseau
Olivier Francais
Bruno Le Pioufle
Feriel S. Hamdi
Vjaceslav Georgiev
Daniel Georgiev
Publication date
12-12-2015
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 9/2017
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-015-2725-y

Other articles of this Issue 9/2017

Microsystem Technologies 9/2017 Go to the issue