Skip to main content
Top

2001 | OriginalPaper | Chapter

Subharmonic Functions

Authors : David H. Armitage, Stephen J. Gardiner

Published in: Classical Potential Theory

Publisher: Springer London

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

We have seen that harmonic functions on an open set Ω can be characterized as those finite-valued, continuous functions h on Ω which satisfy the mean value property: h (x) = M (h;x,r) whenever % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaqdaaWdaeaapeGaamOqamaabmaapaqaa8qacaWG4bGaaiilaiaa % dkhaaiaawIcacaGLPaaaaaGaeyOGIWSaeuyQdCfaaa!3EE1!$$ \overline {B\left( {x,r} \right)} \subset \Omega $$. Subharmonic functions correspond to one half of this definition — they are upper-finite, upper semicontinuous functionss which satisfy the mean value inequality s (x) ≤ M (s;x,r) whenever % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaqdaaWdaeaapeGaamOqamaabmaapaqaa8qacaWG4bGaaiilaiaa % dkhaaiaawIcacaGLPaaaaaGaeyOGIWSaeuyQdCfaaa!3EE1!$$ \overline {B\left( {x,r} \right)} \subset \Omega $$. They are allowed to take the value −∞ 00 so that we can include such fundamental examples as % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qaciGGSbGaai4BaiaacEgadaqbdaWdaeaapeGaamiEaaGaayzcSlaa % wQa7amaabmaapaqaa8qacaWGobGaeyypa0JaaGOmaaGaayjkaiaawM % caaaaa!4164!$$ \log \left\| x \right\|\left( {N = 2} \right)$$ and % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacqGHsisldaqbdaWdaeaapeGaamiEaaGaayzcSlaawQa7a8aadaah % aaWcbeqaa8qacaaIYaGaeyOeI0IaamOtaaaakmaabmaapaqaaiaad6 % eacqGHLjYScaaIZaaapeGaayjkaiaawMcaaaaa!4314!$$ - {\left\| x \right\|^{2 - N}}\left( {N \geqslant 3} \right)$$. Also, semicontinuity (rather th an continuity) is the appropriate condition for certain key results (for example, Theorems 3.1.4 and 3.3.1) to hold. The reason for the name “subharmonic” will become apparent in Section 3.2.

Metadata
Title
Subharmonic Functions
Authors
David H. Armitage
Stephen J. Gardiner
Copyright Year
2001
Publisher
Springer London
DOI
https://doi.org/10.1007/978-1-4471-0233-5_3

Premium Partner