Skip to main content

2001 | OriginalPaper | Buchkapitel

Subharmonic Functions

verfasst von : David H. Armitage, Stephen J. Gardiner

Erschienen in: Classical Potential Theory

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

We have seen that harmonic functions on an open set Ω can be characterized as those finite-valued, continuous functions h on Ω which satisfy the mean value property: h (x) = M (h;x,r) whenever % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaqdaaWdaeaapeGaamOqamaabmaapaqaa8qacaWG4bGaaiilaiaa % dkhaaiaawIcacaGLPaaaaaGaeyOGIWSaeuyQdCfaaa!3EE1!$$ \overline {B\left( {x,r} \right)} \subset \Omega $$. Subharmonic functions correspond to one half of this definition — they are upper-finite, upper semicontinuous functionss which satisfy the mean value inequality s (x) ≤ M (s;x,r) whenever % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaqdaaWdaeaapeGaamOqamaabmaapaqaa8qacaWG4bGaaiilaiaa % dkhaaiaawIcacaGLPaaaaaGaeyOGIWSaeuyQdCfaaa!3EE1!$$ \overline {B\left( {x,r} \right)} \subset \Omega $$. They are allowed to take the value −∞ 00 so that we can include such fundamental examples as % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qaciGGSbGaai4BaiaacEgadaqbdaWdaeaapeGaamiEaaGaayzcSlaa % wQa7amaabmaapaqaa8qacaWGobGaeyypa0JaaGOmaaGaayjkaiaawM % caaaaa!4164!$$ \log \left\| x \right\|\left( {N = 2} \right)$$ and % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacqGHsisldaqbdaWdaeaapeGaamiEaaGaayzcSlaawQa7a8aadaah % aaWcbeqaa8qacaaIYaGaeyOeI0IaamOtaaaakmaabmaapaqaaiaad6 % eacqGHLjYScaaIZaaapeGaayjkaiaawMcaaaaa!4314!$$ - {\left\| x \right\|^{2 - N}}\left( {N \geqslant 3} \right)$$. Also, semicontinuity (rather th an continuity) is the appropriate condition for certain key results (for example, Theorems 3.1.4 and 3.3.1) to hold. The reason for the name “subharmonic” will become apparent in Section 3.2.

Metadaten
Titel
Subharmonic Functions
verfasst von
David H. Armitage
Stephen J. Gardiner
Copyright-Jahr
2001
Verlag
Springer London
DOI
https://doi.org/10.1007/978-1-4471-0233-5_3

Premium Partner