Skip to main content
Top
Published in: Cognitive Computation 6/2018

02-10-2018

Super-Graph Classification Based on Composite Subgraph Features and Extreme Learning Machine

Authors: Jun Pang, Yuhai Zhao, Jia Xu, Yu Gu, Ge Yu

Published in: Cognitive Computation | Issue 6/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A multi-graph is modeled as a bag of graphs, whose mutual relationships can be used to enhance the accuracy of multi-graph classification. However, to the best of our knowledge, research on utilizing those mutual relationships has not been reported. In this paper, we propose a novel super-graph model \(SG=(MG,AG)\), where MG denotes a multi-graph and AG represents a graph (named abstract-graph), that describes the mutual relationships among the graphs contained in MG. The super-graph classification problem is challenging to solve because of the very complex structure of the super-graph model. Furthermore, it is hard to directly select distinguished subgraphs, i.e., subgraph features, from super-graphs. A subgraph g of graph G is a graph that is isomorphic with one of the substructures of G. Moreover, the practical applications require the super-graph classification algorithm to have high precision. In this paper, we propose a concept and algorithm for selecting composite subgraph features, based on which a framework is proposed to solve the super-graph classification problem. Subgraph features denote subgraphs that can be used to distinguish super-graphs with different class labels. We first design a two-step approach to select k composite subgraph features from the subgraphs of super-graphs’ abstract-graphs and multi-graphs. Then, based on composite features and the subgraph feature representation of a super-graph, each super-graph SG is transformed into a 0-1 vector with k dimensions. If there exists a substructure in SG that is isomorphic with its i th composite feature, the i th component of the target vector is set to 1 (1 ≤ ik). Otherwise, it is set to 0. Based on the derived k-dimensional vectors, one of the existing classification algorithms is used to construct a prediction model to predict the class labels of the unseen super-graphs, such as naive Bayes or support vector machine (SVM). Specifically, we adapt the extreme learning machine (ELM) algorithm to further improve the accuracy of super-graph classification. In this paper, we propose a super-graph model and study the problem of super-graph classification. We first derive the concept of composite subgraph features that are selected by our proposed two-step method. Based on the mined composite subgraph features, we propose a super-graph classification framework (SGC) to solve the super-graph classification problem. Moreover, ELM can be used to further improve the classification accuracy. Extensive experiments on real-world image datasets show that our algorithm based on ELM is more accurate than the baseline algorithms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wu J, Hong Z, Pan S, et al. Multi-graph learning with positive and unlabeled bags. SDM; 2014. p. 217–25. Wu J, Hong Z, Pan S, et al. Multi-graph learning with positive and unlabeled bags. SDM; 2014. p. 217–25.
2.
go back to reference Wu J, Zhu X, Zhang C, et al. Bag constrained structure pattern mining for multi-graph classification. TKDE 2014;26(10):2382–96. Wu J, Zhu X, Zhang C, et al. Bag constrained structure pattern mining for multi-graph classification. TKDE 2014;26(10):2382–96.
3.
go back to reference Wu J, Pan S, Zhu X, et al. Boosting for multi-graph classification. T Cybern 2015;45(3):430–43. Wu J, Pan S, Zhu X, et al. Boosting for multi-graph classification. T Cybern 2015;45(3):430–43.
4.
go back to reference Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 2012;34(11):2274–82.PubMedCrossRef Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 2012;34(11):2274–82.PubMedCrossRef
5.
go back to reference Pang J, Gu Y, Xu J, et al. Parallel multi-graph classification using extreme learning machine and MapReduce. ELM; 2015. p. 77–92. Pang J, Gu Y, Xu J, et al. Parallel multi-graph classification using extreme learning machine and MapReduce. ELM; 2015. p. 77–92.
6.
go back to reference Oneto L, Bisio F, Cambria E. SLT-based ELM for big social data analysis. Cogn Comput 2017;9(2): 259–74.CrossRef Oneto L, Bisio F, Cambria E. SLT-based ELM for big social data analysis. Cogn Comput 2017;9(2): 259–74.CrossRef
7.
go back to reference Wang J, Ye K, Cao J, et al. DOA estimation of excavation devices with ELM and MUSIC-based hybrid algorithm. Cogn Comput 2017;9(4):564–80.CrossRef Wang J, Ye K, Cao J, et al. DOA estimation of excavation devices with ELM and MUSIC-based hybrid algorithm. Cogn Comput 2017;9(4):564–80.CrossRef
8.
go back to reference Zhang Z, Zhao X, Wang G. FE-ELM: a new friend recommendation model with extreme learning machine. Cogn Comput 2017;9(5):659–70.CrossRef Zhang Z, Zhao X, Wang G. FE-ELM: a new friend recommendation model with extreme learning machine. Cogn Comput 2017;9(5):659–70.CrossRef
9.
go back to reference Kong X, Yu P. Semi-supervised feature selection for graph classification. KDD; 2010. p. 793–802. Kong X, Yu P. Semi-supervised feature selection for graph classification. KDD; 2010. p. 793–802.
10.
go back to reference Yan X, Cheng H, Han J, et al. Mining significant graph patterns by leap search. SIGMOD; 2008. p. 433–44. Yan X, Cheng H, Han J, et al. Mining significant graph patterns by leap search. SIGMOD; 2008. p. 433–44.
11.
go back to reference Ranu S, Singh A. Graphsig: a scalable approach to mining significant subgraphs in large graph databases. ICDE; 2009 . p. 844–55. Ranu S, Singh A. Graphsig: a scalable approach to mining significant subgraphs in large graph databases. ICDE; 2009 . p. 844–55.
12.
go back to reference Jin N, Wang W. LTS: discriminative subgraph mining by learning from search history. ICDE; 2011. p. 207–18. Jin N, Wang W. LTS: discriminative subgraph mining by learning from search history. ICDE; 2011. p. 207–18.
13.
go back to reference Zhu Y, Yu J, Cheng H, et al. Graph classification: a diversified discriminative feature selection approach. CIKM; 2012. p. 205–14. Zhu Y, Yu J, Cheng H, et al. Graph classification: a diversified discriminative feature selection approach. CIKM; 2012. p. 205–14.
14.
go back to reference Huang G, Zhu Q, Siew CK. Extreme learning machine: a new learning scheme of feedforward neural networks. IJCNN; 2004. p. 985–90. Huang G, Zhu Q, Siew CK. Extreme learning machine: a new learning scheme of feedforward neural networks. IJCNN; 2004. p. 985–90.
15.
go back to reference Huang G, Liang N, Rong H, et al. On-line sequential extreme learning machine. IASTED; 2005. p. 232–7. Huang G, Liang N, Rong H, et al. On-line sequential extreme learning machine. IASTED; 2005. p. 232–7.
16.
go back to reference Huang G, Zhu Q, Siew CK, et al. Extreme learning machine: theory and applications. Neurocomputing 2006;70(1–3):489–501.CrossRef Huang G, Zhu Q, Siew CK, et al. Extreme learning machine: theory and applications. Neurocomputing 2006;70(1–3):489–501.CrossRef
17.
go back to reference Huang G, Chen L. Convex incremental extreme learning machine. Neurocomputing 2007;70(16–18):3056–62.CrossRef Huang G, Chen L. Convex incremental extreme learning machine. Neurocomputing 2007;70(16–18):3056–62.CrossRef
18.
go back to reference Huang G, Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing 2008;71(16–18):3460–8.CrossRef Huang G, Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing 2008;71(16–18):3460–8.CrossRef
19.
go back to reference Huang G, Ding X, Zhou H. Optimization method based extreme learning machine for classification. Neurocomputing 2010;74(1–3):155–63.CrossRef Huang G, Ding X, Zhou H. Optimization method based extreme learning machine for classification. Neurocomputing 2010;74(1–3):155–63.CrossRef
20.
go back to reference Huang G, Wang D, Lan Y. Extreme learning machines: a survey. Int J Mach Learn Cybern 2011;2(2): 107–22.CrossRef Huang G, Wang D, Lan Y. Extreme learning machines: a survey. Int J Mach Learn Cybern 2011;2(2): 107–22.CrossRef
21.
go back to reference Huang G, Zhou H, Ding X, et al. Extreme learning machine for regression and multiclass classification. Trans Syst Man Cybern B Cybern 2012;42(2):513–29.CrossRef Huang G, Zhou H, Ding X, et al. Extreme learning machine for regression and multiclass classification. Trans Syst Man Cybern B Cybern 2012;42(2):513–29.CrossRef
22.
go back to reference Huang G, Wang D. Advances in extreme learning machines (ELM2011). Neurocomputing 2013;102:1–2.CrossRef Huang G, Wang D. Advances in extreme learning machines (ELM2011). Neurocomputing 2013;102:1–2.CrossRef
23.
go back to reference Huang G. An insight into extreme learning machines: random neurons, random features and Kernels. Cogn Comput 2014;6(3):376–90.CrossRef Huang G. An insight into extreme learning machines: random neurons, random features and Kernels. Cogn Comput 2014;6(3):376–90.CrossRef
24.
go back to reference Xin J, Wang Z, Chen C, et al. ELM∗: distributed extreme learning machine with MapReduce. World Wide Web 2014;17(5):1189–204.CrossRef Xin J, Wang Z, Chen C, et al. ELM: distributed extreme learning machine with MapReduce. World Wide Web 2014;17(5):1189–204.CrossRef
25.
go back to reference Xin J, Wang Z, Qu L, et al. Elastic extreme learning machine for big data classification. Neurocomputing 2015;149(Part A):464–71.CrossRef Xin J, Wang Z, Qu L, et al. Elastic extreme learning machine for big data classification. Neurocomputing 2015;149(Part A):464–71.CrossRef
26.
go back to reference Bi X, Zhao X, Wang G, et al. Distributed extreme learning machine with Kernels based on MapReduce. Neurocomputing 2015;149:456–63.CrossRef Bi X, Zhao X, Wang G, et al. Distributed extreme learning machine with Kernels based on MapReduce. Neurocomputing 2015;149:456–63.CrossRef
27.
go back to reference Wang B, Huang S, Qiu J, et al. Parallel online sequential extreme learning machine based on MapReduce. Neurocomputing 2015;149:224–32.CrossRef Wang B, Huang S, Qiu J, et al. Parallel online sequential extreme learning machine based on MapReduce. Neurocomputing 2015;149:224–32.CrossRef
28.
go back to reference Huang G, Bai X, Kasun LLC, et al. Local receptive fields based extreme learning machine. Comput Intell Mag 2015;10(2):18–29.CrossRef Huang G, Bai X, Kasun LLC, et al. Local receptive fields based extreme learning machine. Comput Intell Mag 2015;10(2):18–29.CrossRef
29.
go back to reference Huang G. What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle. Cogn Comput 2015;7(3):263–78.CrossRef Huang G. What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle. Cogn Comput 2015;7(3):263–78.CrossRef
30.
go back to reference Kasun L, Yang Y, Huang G, et al. Dimension reduction with extreme learning machine. IEEE Trans Image Process 2016;25(8):3906–18.PubMedCrossRef Kasun L, Yang Y, Huang G, et al. Dimension reduction with extreme learning machine. IEEE Trans Image Process 2016;25(8):3906–18.PubMedCrossRef
31.
go back to reference Cui D, Huang G, Liu T. Smile detection using pair-wise distance vector and extreme learning machine. International joint conference on neural networks (IJCNN); 2016. p. 2298–305. Cui D, Huang G, Liu T. Smile detection using pair-wise distance vector and extreme learning machine. International joint conference on neural networks (IJCNN); 2016. p. 2298–305.
32.
go back to reference Tang J, Deng C, Huang G. Extreme learning machine for multilayer perceptron. IEEE Trans Neural Netw Learning Syst 2016;27(4):809–21.CrossRef Tang J, Deng C, Huang G. Extreme learning machine for multilayer perceptron. IEEE Trans Neural Netw Learning Syst 2016;27(4):809–21.CrossRef
33.
go back to reference Man Z, Huang G. Guest editorial: special issue on Extreme learning machine and applications(I). Neural Comput & Applic 2016;27(1):1–12.CrossRef Man Z, Huang G. Guest editorial: special issue on Extreme learning machine and applications(I). Neural Comput & Applic 2016;27(1):1–12.CrossRef
34.
go back to reference Man Z, Huang G. Guest editorial: special issue on extreme learning machine and applications(II). Neural Comput & Applic 2016;27(2):253–4.CrossRef Man Z, Huang G. Guest editorial: special issue on extreme learning machine and applications(II). Neural Comput & Applic 2016;27(2):253–4.CrossRef
35.
go back to reference Wang G, YZ, Wang D. A protein secondary structure prediction framework based on the extreme learning machine. Neurocomputing 2008;72(1–3):262–8.CrossRef Wang G, YZ, Wang D. A protein secondary structure prediction framework based on the extreme learning machine. Neurocomputing 2008;72(1–3):262–8.CrossRef
36.
go back to reference Sun Y, Yuan Y, Wang G. An OS-ELM based distributed ensemble classification framework in P2P networks. Neurocomputing 2011;74(16):2438–43.CrossRef Sun Y, Yuan Y, Wang G. An OS-ELM based distributed ensemble classification framework in P2P networks. Neurocomputing 2011;74(16):2438–43.CrossRef
37.
go back to reference Zhao X, Wang G, Bin X, et al. XML document classification based on ELM. Neurocomputing 2011; 74(16):2444–51.CrossRef Zhao X, Wang G, Bin X, et al. XML document classification based on ELM. Neurocomputing 2011; 74(16):2444–51.CrossRef
38.
go back to reference Akusok A, Bjork KM, Miche Y, et al. High-performance extreme learning machines: a complete toolbox for big data applications. IEEE Access 2015;3:1011–25.CrossRef Akusok A, Bjork KM, Miche Y, et al. High-performance extreme learning machines: a complete toolbox for big data applications. IEEE Access 2015;3:1011–25.CrossRef
39.
go back to reference Wang Z, Zhao Y, Wang G, et al. On extending extreme learning machine to non-redundant synergy pattern based graph classification. Neurocomputing 2015;149:330–9.CrossRef Wang Z, Zhao Y, Wang G, et al. On extending extreme learning machine to non-redundant synergy pattern based graph classification. Neurocomputing 2015;149:330–9.CrossRef
40.
go back to reference Han D, Hu Y, Ai S, et al. Uncertain graph classification based on extreme learning machine. Cogn Comput 2015;7(3):346–58.CrossRef Han D, Hu Y, Ai S, et al. Uncertain graph classification based on extreme learning machine. Cogn Comput 2015;7(3):346–58.CrossRef
41.
go back to reference Cao K, Wang G, Han D, et al. Classification of uncertain data streams based on extreme learning machine. Cogn Comput 2015;7(1):150–60.CrossRef Cao K, Wang G, Han D, et al. Classification of uncertain data streams based on extreme learning machine. Cogn Comput 2015;7(1):150–60.CrossRef
47.
go back to reference Zhou ZH, Sun YY, Li YF. Multi-instance learning by treating instances as Non-I.I.D. samples. International conference on machine learning; 2009. p. 1249–56. Zhou ZH, Sun YY, Li YF. Multi-instance learning by treating instances as Non-I.I.D. samples. International conference on machine learning; 2009. p. 1249–56.
Metadata
Title
Super-Graph Classification Based on Composite Subgraph Features and Extreme Learning Machine
Authors
Jun Pang
Yuhai Zhao
Jia Xu
Yu Gu
Ge Yu
Publication date
02-10-2018
Publisher
Springer US
Published in
Cognitive Computation / Issue 6/2018
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-018-9601-x

Other articles of this Issue 6/2018

Cognitive Computation 6/2018 Go to the issue

Premium Partner