Skip to main content
Erschienen in: Cognitive Computation 6/2018

02.10.2018

Super-Graph Classification Based on Composite Subgraph Features and Extreme Learning Machine

verfasst von: Jun Pang, Yuhai Zhao, Jia Xu, Yu Gu, Ge Yu

Erschienen in: Cognitive Computation | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A multi-graph is modeled as a bag of graphs, whose mutual relationships can be used to enhance the accuracy of multi-graph classification. However, to the best of our knowledge, research on utilizing those mutual relationships has not been reported. In this paper, we propose a novel super-graph model \(SG=(MG,AG)\), where MG denotes a multi-graph and AG represents a graph (named abstract-graph), that describes the mutual relationships among the graphs contained in MG. The super-graph classification problem is challenging to solve because of the very complex structure of the super-graph model. Furthermore, it is hard to directly select distinguished subgraphs, i.e., subgraph features, from super-graphs. A subgraph g of graph G is a graph that is isomorphic with one of the substructures of G. Moreover, the practical applications require the super-graph classification algorithm to have high precision. In this paper, we propose a concept and algorithm for selecting composite subgraph features, based on which a framework is proposed to solve the super-graph classification problem. Subgraph features denote subgraphs that can be used to distinguish super-graphs with different class labels. We first design a two-step approach to select k composite subgraph features from the subgraphs of super-graphs’ abstract-graphs and multi-graphs. Then, based on composite features and the subgraph feature representation of a super-graph, each super-graph SG is transformed into a 0-1 vector with k dimensions. If there exists a substructure in SG that is isomorphic with its i th composite feature, the i th component of the target vector is set to 1 (1 ≤ ik). Otherwise, it is set to 0. Based on the derived k-dimensional vectors, one of the existing classification algorithms is used to construct a prediction model to predict the class labels of the unseen super-graphs, such as naive Bayes or support vector machine (SVM). Specifically, we adapt the extreme learning machine (ELM) algorithm to further improve the accuracy of super-graph classification. In this paper, we propose a super-graph model and study the problem of super-graph classification. We first derive the concept of composite subgraph features that are selected by our proposed two-step method. Based on the mined composite subgraph features, we propose a super-graph classification framework (SGC) to solve the super-graph classification problem. Moreover, ELM can be used to further improve the classification accuracy. Extensive experiments on real-world image datasets show that our algorithm based on ELM is more accurate than the baseline algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wu J, Hong Z, Pan S, et al. Multi-graph learning with positive and unlabeled bags. SDM; 2014. p. 217–25. Wu J, Hong Z, Pan S, et al. Multi-graph learning with positive and unlabeled bags. SDM; 2014. p. 217–25.
2.
Zurück zum Zitat Wu J, Zhu X, Zhang C, et al. Bag constrained structure pattern mining for multi-graph classification. TKDE 2014;26(10):2382–96. Wu J, Zhu X, Zhang C, et al. Bag constrained structure pattern mining for multi-graph classification. TKDE 2014;26(10):2382–96.
3.
Zurück zum Zitat Wu J, Pan S, Zhu X, et al. Boosting for multi-graph classification. T Cybern 2015;45(3):430–43. Wu J, Pan S, Zhu X, et al. Boosting for multi-graph classification. T Cybern 2015;45(3):430–43.
4.
Zurück zum Zitat Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 2012;34(11):2274–82.PubMedCrossRef Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 2012;34(11):2274–82.PubMedCrossRef
5.
Zurück zum Zitat Pang J, Gu Y, Xu J, et al. Parallel multi-graph classification using extreme learning machine and MapReduce. ELM; 2015. p. 77–92. Pang J, Gu Y, Xu J, et al. Parallel multi-graph classification using extreme learning machine and MapReduce. ELM; 2015. p. 77–92.
6.
Zurück zum Zitat Oneto L, Bisio F, Cambria E. SLT-based ELM for big social data analysis. Cogn Comput 2017;9(2): 259–74.CrossRef Oneto L, Bisio F, Cambria E. SLT-based ELM for big social data analysis. Cogn Comput 2017;9(2): 259–74.CrossRef
7.
Zurück zum Zitat Wang J, Ye K, Cao J, et al. DOA estimation of excavation devices with ELM and MUSIC-based hybrid algorithm. Cogn Comput 2017;9(4):564–80.CrossRef Wang J, Ye K, Cao J, et al. DOA estimation of excavation devices with ELM and MUSIC-based hybrid algorithm. Cogn Comput 2017;9(4):564–80.CrossRef
8.
Zurück zum Zitat Zhang Z, Zhao X, Wang G. FE-ELM: a new friend recommendation model with extreme learning machine. Cogn Comput 2017;9(5):659–70.CrossRef Zhang Z, Zhao X, Wang G. FE-ELM: a new friend recommendation model with extreme learning machine. Cogn Comput 2017;9(5):659–70.CrossRef
9.
Zurück zum Zitat Kong X, Yu P. Semi-supervised feature selection for graph classification. KDD; 2010. p. 793–802. Kong X, Yu P. Semi-supervised feature selection for graph classification. KDD; 2010. p. 793–802.
10.
Zurück zum Zitat Yan X, Cheng H, Han J, et al. Mining significant graph patterns by leap search. SIGMOD; 2008. p. 433–44. Yan X, Cheng H, Han J, et al. Mining significant graph patterns by leap search. SIGMOD; 2008. p. 433–44.
11.
Zurück zum Zitat Ranu S, Singh A. Graphsig: a scalable approach to mining significant subgraphs in large graph databases. ICDE; 2009 . p. 844–55. Ranu S, Singh A. Graphsig: a scalable approach to mining significant subgraphs in large graph databases. ICDE; 2009 . p. 844–55.
12.
Zurück zum Zitat Jin N, Wang W. LTS: discriminative subgraph mining by learning from search history. ICDE; 2011. p. 207–18. Jin N, Wang W. LTS: discriminative subgraph mining by learning from search history. ICDE; 2011. p. 207–18.
13.
Zurück zum Zitat Zhu Y, Yu J, Cheng H, et al. Graph classification: a diversified discriminative feature selection approach. CIKM; 2012. p. 205–14. Zhu Y, Yu J, Cheng H, et al. Graph classification: a diversified discriminative feature selection approach. CIKM; 2012. p. 205–14.
14.
Zurück zum Zitat Huang G, Zhu Q, Siew CK. Extreme learning machine: a new learning scheme of feedforward neural networks. IJCNN; 2004. p. 985–90. Huang G, Zhu Q, Siew CK. Extreme learning machine: a new learning scheme of feedforward neural networks. IJCNN; 2004. p. 985–90.
15.
Zurück zum Zitat Huang G, Liang N, Rong H, et al. On-line sequential extreme learning machine. IASTED; 2005. p. 232–7. Huang G, Liang N, Rong H, et al. On-line sequential extreme learning machine. IASTED; 2005. p. 232–7.
16.
Zurück zum Zitat Huang G, Zhu Q, Siew CK, et al. Extreme learning machine: theory and applications. Neurocomputing 2006;70(1–3):489–501.CrossRef Huang G, Zhu Q, Siew CK, et al. Extreme learning machine: theory and applications. Neurocomputing 2006;70(1–3):489–501.CrossRef
17.
Zurück zum Zitat Huang G, Chen L. Convex incremental extreme learning machine. Neurocomputing 2007;70(16–18):3056–62.CrossRef Huang G, Chen L. Convex incremental extreme learning machine. Neurocomputing 2007;70(16–18):3056–62.CrossRef
18.
Zurück zum Zitat Huang G, Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing 2008;71(16–18):3460–8.CrossRef Huang G, Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing 2008;71(16–18):3460–8.CrossRef
19.
Zurück zum Zitat Huang G, Ding X, Zhou H. Optimization method based extreme learning machine for classification. Neurocomputing 2010;74(1–3):155–63.CrossRef Huang G, Ding X, Zhou H. Optimization method based extreme learning machine for classification. Neurocomputing 2010;74(1–3):155–63.CrossRef
20.
Zurück zum Zitat Huang G, Wang D, Lan Y. Extreme learning machines: a survey. Int J Mach Learn Cybern 2011;2(2): 107–22.CrossRef Huang G, Wang D, Lan Y. Extreme learning machines: a survey. Int J Mach Learn Cybern 2011;2(2): 107–22.CrossRef
21.
Zurück zum Zitat Huang G, Zhou H, Ding X, et al. Extreme learning machine for regression and multiclass classification. Trans Syst Man Cybern B Cybern 2012;42(2):513–29.CrossRef Huang G, Zhou H, Ding X, et al. Extreme learning machine for regression and multiclass classification. Trans Syst Man Cybern B Cybern 2012;42(2):513–29.CrossRef
22.
Zurück zum Zitat Huang G, Wang D. Advances in extreme learning machines (ELM2011). Neurocomputing 2013;102:1–2.CrossRef Huang G, Wang D. Advances in extreme learning machines (ELM2011). Neurocomputing 2013;102:1–2.CrossRef
23.
Zurück zum Zitat Huang G. An insight into extreme learning machines: random neurons, random features and Kernels. Cogn Comput 2014;6(3):376–90.CrossRef Huang G. An insight into extreme learning machines: random neurons, random features and Kernels. Cogn Comput 2014;6(3):376–90.CrossRef
24.
Zurück zum Zitat Xin J, Wang Z, Chen C, et al. ELM∗: distributed extreme learning machine with MapReduce. World Wide Web 2014;17(5):1189–204.CrossRef Xin J, Wang Z, Chen C, et al. ELM: distributed extreme learning machine with MapReduce. World Wide Web 2014;17(5):1189–204.CrossRef
25.
Zurück zum Zitat Xin J, Wang Z, Qu L, et al. Elastic extreme learning machine for big data classification. Neurocomputing 2015;149(Part A):464–71.CrossRef Xin J, Wang Z, Qu L, et al. Elastic extreme learning machine for big data classification. Neurocomputing 2015;149(Part A):464–71.CrossRef
26.
Zurück zum Zitat Bi X, Zhao X, Wang G, et al. Distributed extreme learning machine with Kernels based on MapReduce. Neurocomputing 2015;149:456–63.CrossRef Bi X, Zhao X, Wang G, et al. Distributed extreme learning machine with Kernels based on MapReduce. Neurocomputing 2015;149:456–63.CrossRef
27.
Zurück zum Zitat Wang B, Huang S, Qiu J, et al. Parallel online sequential extreme learning machine based on MapReduce. Neurocomputing 2015;149:224–32.CrossRef Wang B, Huang S, Qiu J, et al. Parallel online sequential extreme learning machine based on MapReduce. Neurocomputing 2015;149:224–32.CrossRef
28.
Zurück zum Zitat Huang G, Bai X, Kasun LLC, et al. Local receptive fields based extreme learning machine. Comput Intell Mag 2015;10(2):18–29.CrossRef Huang G, Bai X, Kasun LLC, et al. Local receptive fields based extreme learning machine. Comput Intell Mag 2015;10(2):18–29.CrossRef
29.
Zurück zum Zitat Huang G. What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle. Cogn Comput 2015;7(3):263–78.CrossRef Huang G. What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle. Cogn Comput 2015;7(3):263–78.CrossRef
30.
Zurück zum Zitat Kasun L, Yang Y, Huang G, et al. Dimension reduction with extreme learning machine. IEEE Trans Image Process 2016;25(8):3906–18.PubMedCrossRef Kasun L, Yang Y, Huang G, et al. Dimension reduction with extreme learning machine. IEEE Trans Image Process 2016;25(8):3906–18.PubMedCrossRef
31.
Zurück zum Zitat Cui D, Huang G, Liu T. Smile detection using pair-wise distance vector and extreme learning machine. International joint conference on neural networks (IJCNN); 2016. p. 2298–305. Cui D, Huang G, Liu T. Smile detection using pair-wise distance vector and extreme learning machine. International joint conference on neural networks (IJCNN); 2016. p. 2298–305.
32.
Zurück zum Zitat Tang J, Deng C, Huang G. Extreme learning machine for multilayer perceptron. IEEE Trans Neural Netw Learning Syst 2016;27(4):809–21.CrossRef Tang J, Deng C, Huang G. Extreme learning machine for multilayer perceptron. IEEE Trans Neural Netw Learning Syst 2016;27(4):809–21.CrossRef
33.
Zurück zum Zitat Man Z, Huang G. Guest editorial: special issue on Extreme learning machine and applications(I). Neural Comput & Applic 2016;27(1):1–12.CrossRef Man Z, Huang G. Guest editorial: special issue on Extreme learning machine and applications(I). Neural Comput & Applic 2016;27(1):1–12.CrossRef
34.
Zurück zum Zitat Man Z, Huang G. Guest editorial: special issue on extreme learning machine and applications(II). Neural Comput & Applic 2016;27(2):253–4.CrossRef Man Z, Huang G. Guest editorial: special issue on extreme learning machine and applications(II). Neural Comput & Applic 2016;27(2):253–4.CrossRef
35.
Zurück zum Zitat Wang G, YZ, Wang D. A protein secondary structure prediction framework based on the extreme learning machine. Neurocomputing 2008;72(1–3):262–8.CrossRef Wang G, YZ, Wang D. A protein secondary structure prediction framework based on the extreme learning machine. Neurocomputing 2008;72(1–3):262–8.CrossRef
36.
Zurück zum Zitat Sun Y, Yuan Y, Wang G. An OS-ELM based distributed ensemble classification framework in P2P networks. Neurocomputing 2011;74(16):2438–43.CrossRef Sun Y, Yuan Y, Wang G. An OS-ELM based distributed ensemble classification framework in P2P networks. Neurocomputing 2011;74(16):2438–43.CrossRef
37.
Zurück zum Zitat Zhao X, Wang G, Bin X, et al. XML document classification based on ELM. Neurocomputing 2011; 74(16):2444–51.CrossRef Zhao X, Wang G, Bin X, et al. XML document classification based on ELM. Neurocomputing 2011; 74(16):2444–51.CrossRef
38.
Zurück zum Zitat Akusok A, Bjork KM, Miche Y, et al. High-performance extreme learning machines: a complete toolbox for big data applications. IEEE Access 2015;3:1011–25.CrossRef Akusok A, Bjork KM, Miche Y, et al. High-performance extreme learning machines: a complete toolbox for big data applications. IEEE Access 2015;3:1011–25.CrossRef
39.
Zurück zum Zitat Wang Z, Zhao Y, Wang G, et al. On extending extreme learning machine to non-redundant synergy pattern based graph classification. Neurocomputing 2015;149:330–9.CrossRef Wang Z, Zhao Y, Wang G, et al. On extending extreme learning machine to non-redundant synergy pattern based graph classification. Neurocomputing 2015;149:330–9.CrossRef
40.
Zurück zum Zitat Han D, Hu Y, Ai S, et al. Uncertain graph classification based on extreme learning machine. Cogn Comput 2015;7(3):346–58.CrossRef Han D, Hu Y, Ai S, et al. Uncertain graph classification based on extreme learning machine. Cogn Comput 2015;7(3):346–58.CrossRef
41.
Zurück zum Zitat Cao K, Wang G, Han D, et al. Classification of uncertain data streams based on extreme learning machine. Cogn Comput 2015;7(1):150–60.CrossRef Cao K, Wang G, Han D, et al. Classification of uncertain data streams based on extreme learning machine. Cogn Comput 2015;7(1):150–60.CrossRef
47.
Zurück zum Zitat Zhou ZH, Sun YY, Li YF. Multi-instance learning by treating instances as Non-I.I.D. samples. International conference on machine learning; 2009. p. 1249–56. Zhou ZH, Sun YY, Li YF. Multi-instance learning by treating instances as Non-I.I.D. samples. International conference on machine learning; 2009. p. 1249–56.
Metadaten
Titel
Super-Graph Classification Based on Composite Subgraph Features and Extreme Learning Machine
verfasst von
Jun Pang
Yuhai Zhao
Jia Xu
Yu Gu
Ge Yu
Publikationsdatum
02.10.2018
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 6/2018
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-018-9601-x

Weitere Artikel der Ausgabe 6/2018

Cognitive Computation 6/2018 Zur Ausgabe

Premium Partner