Skip to main content
Top
Published in: Rare Metals 5/2022

22-01-2022 | Original Article

Surface engineering based on in situ electro-polymerization to boost the initial Coulombic efficiency of hard carbon anode for sodium-ion battery

Authors: Cheng-Xin Yu, Yu Li, Zhao-Hua Wang, Xin-Ran Wang, Ying Bai, Chuan Wu

Published in: Rare Metals | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hard carbon (HC) is considered as a commercial candidate for anode materials of sodium-ion batteries due to its low cost and excellent capacity. However, the problem of low initial Coulombic efficiency is still urgently needed to be solved to promote the industrialization of HC. In this paper, 2,2-dimethylvinyl boric acid (DEBA) is used to modify the surface of HC to prepare HC-DEBA materials. During the cycling, the C = C bonds of DEBA molecules will be in situ electro-polymerized to form a polymer network, which can act as the passive protecting layer to inhibit irreversible decomposition of electrolyte, and induce a thinner solid electrolyte interface with lower interface impedance. Therefore, HC-DEBA has higher initial Coulombic efficiency and better cycling stability. In ester-based electrolyte, the initial Coulombic efficiency of the optimized HC-DEBA-3% increases from 65.2% to 77.2%. After 2000 cycles at 1 A·g−1, the capacity retention rate is 90.92%. Moreover, it can provide a high reversible capacity of 294.7 mAh·g−1 at 50 mA·g−1. This simple surface modification method is ingenious and versatile, which can be extended to other energy storage materials.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
[1]
go back to reference Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928. Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928.
[2]
go back to reference Pu XJ, Wang HW, Zhao D, Yang HX, Ai XP, Cao SN, Chen ZX, Cao YL. Recent progress in rechargeable sodium-ion batteries: toward high-power applications. Small. 2019;15(32):1805427. Pu XJ, Wang HW, Zhao D, Yang HX, Ai XP, Cao SN, Chen ZX, Cao YL. Recent progress in rechargeable sodium-ion batteries: toward high-power applications. Small. 2019;15(32):1805427.
[3]
go back to reference Li Y, Bai Y, Yang Z, Wang ZH, Chen S, Wu F, Wu C. Reorganizing electronic structure of Li3V2(PO4)3 using polyanion (BO3)3-: towards better electrochemical performances. Rare Met. 2017;36(5):1. Li Y, Bai Y, Yang Z, Wang ZH, Chen S, Wu F, Wu C. Reorganizing electronic structure of Li3V2(PO4)3 using polyanion (BO3)3-: towards better electrochemical performances. Rare Met. 2017;36(5):1.
[4]
go back to reference Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2015;7(1):19. Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2015;7(1):19.
[5]
go back to reference Scrosati B. History of lithium batteries. J Solid State Electrochem. 2011;15(7):1623. Scrosati B. History of lithium batteries. J Solid State Electrochem. 2011;15(7):1623.
[6]
go back to reference Xie JP, Li JL, Li XD, Lei H, Zhou WC, Li XB, Hong G, Hui KN, Pan LK, Mai WJ. Ultrahigh “relative energy density” and mass loading of carbon cloth anodes for K-ion batteries. CCS Chem. 2021;3(2):791. Xie JP, Li JL, Li XD, Lei H, Zhou WC, Li XB, Hong G, Hui KN, Pan LK, Mai WJ. Ultrahigh “relative energy density” and mass loading of carbon cloth anodes for K-ion batteries. CCS Chem. 2021;3(2):791.
[7]
go back to reference Zhu JZ, Liu ZG, Yue LG, Li WW, Zhang HY, Zhao LG, Zheng H, Wang JB, Li YY. Green, template-less synthesis of honeycomb-like porous micron-sized red phosphorus for high-performance lithium storage. ACS Nano. 2021;15(1):1880. Zhu JZ, Liu ZG, Yue LG, Li WW, Zhang HY, Zhao LG, Zheng H, Wang JB, Li YY. Green, template-less synthesis of honeycomb-like porous micron-sized red phosphorus for high-performance lithium storage. ACS Nano. 2021;15(1):1880.
[8]
go back to reference Yuan XR, Chen SM, Li JL, Xie JP, Yan GH, Liu B, Li XB, Li R, Pui L, Pan LK, Mai WJ. Understanding the improved performance of sulfur-doped interconnected carbon microspheres for Na-ion storage. Carbon Energy. 2021;3(4):615. Yuan XR, Chen SM, Li JL, Xie JP, Yan GH, Liu B, Li XB, Li R, Pui L, Pan LK, Mai WJ. Understanding the improved performance of sulfur-doped interconnected carbon microspheres for Na-ion storage. Carbon Energy. 2021;3(4):615.
[9]
go back to reference Kim SW, Seo DH, Ma X, Ceder G, Kang K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater. 2012;2(7):710. Kim SW, Seo DH, Ma X, Ceder G, Kang K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater. 2012;2(7):710.
[10]
go back to reference Li Y, Qian J, Zhang Q, Zhang MH, Wang S, Wang ZH, Li MS, Bai Y, An QY, Xu HJ, Wu F, Mai LQ, Wu C. Co-construction of sulfur vacancies and heterojunctions in tungsten disulfide to induce fast electronic/ionic diffusion kinetics for sodium-ion batteries. Adv Mater. 2020;32(47):2005802. Li Y, Qian J, Zhang Q, Zhang MH, Wang S, Wang ZH, Li MS, Bai Y, An QY, Xu HJ, Wu F, Mai LQ, Wu C. Co-construction of sulfur vacancies and heterojunctions in tungsten disulfide to induce fast electronic/ionic diffusion kinetics for sodium-ion batteries. Adv Mater. 2020;32(47):2005802.
[11]
go back to reference Cheng DL, Yang LC, Min Z. High-performance anode materials for Na-ion batteries. Rare Met. 2018;37(03):167. Cheng DL, Yang LC, Min Z. High-performance anode materials for Na-ion batteries. Rare Met. 2018;37(03):167.
[12]
go back to reference Lin C, Fiore M, Ji EW, Ruffo R, Kim DK, Longoni G. Readiness level of sodium-ion battery technology: a materials review. Adv Sustain Syst. 2018;2(3):1700153. Lin C, Fiore M, Ji EW, Ruffo R, Kim DK, Longoni G. Readiness level of sodium-ion battery technology: a materials review. Adv Sustain Syst. 2018;2(3):1700153.
[13]
go back to reference Wei L, Fei S, Bommier C, Zhu HL, Hu L. Na-ion battery anodes: materials and electrochemistry. Acc Chem Res. 2016;49(2):231. Wei L, Fei S, Bommier C, Zhu HL, Hu L. Na-ion battery anodes: materials and electrochemistry. Acc Chem Res. 2016;49(2):231.
[16]
go back to reference Wang XK, Shi J, Mi LW, Zhai YP, Zhang JY, Feng XM, Wu ZJ, Chen WH. Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium-ion batteries. Rare Met. 2020;39(12):1053. Wang XK, Shi J, Mi LW, Zhai YP, Zhang JY, Feng XM, Wu ZJ, Chen WH. Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium-ion batteries. Rare Met. 2020;39(12):1053.
[17]
go back to reference Li YY, Ou CZ, Zhu JL, Liu ZG, Yu JL, Li WW, Zhang HY, Zhang QB, Guo ZP. Ultrahigh and durable volumetric lithium/sodium storage enabled by highly dense graphene encapsulated nitrogen-doped carbon@Sn compact monolith. Nano Lett. 2020;20(3):2034. Li YY, Ou CZ, Zhu JL, Liu ZG, Yu JL, Li WW, Zhang HY, Zhang QB, Guo ZP. Ultrahigh and durable volumetric lithium/sodium storage enabled by highly dense graphene encapsulated nitrogen-doped carbon@Sn compact monolith. Nano Lett. 2020;20(3):2034.
[18]
go back to reference Dou XW, Hasa I, Saurel D, Vaalma C, Wu LM, Buchholz D, Bresser D, Komaba S, Passerini S. Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry. Mater Today. 2014;2019(23):87. Dou XW, Hasa I, Saurel D, Vaalma C, Wu LM, Buchholz D, Bresser D, Komaba S, Passerini S. Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry. Mater Today. 2014;2019(23):87.
[19]
go back to reference Zhao LF, Hu Z, Lai WH, Tao Y, Peng J, Miao ZC, Wang YX, Chou SL, Liu HK, Dou SX. Hard carbon anodes: fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts. Adv Energy Mater. 2021;11(1):2002704. Zhao LF, Hu Z, Lai WH, Tao Y, Peng J, Miao ZC, Wang YX, Chou SL, Liu HK, Dou SX. Hard carbon anodes: fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts. Adv Energy Mater. 2021;11(1):2002704.
[20]
go back to reference Wu F, Liu L, Yuan YF, Li Y, Bai Y, Li T, Lu J, Wu C. Expanding interlayer spacing of hard carbon by natural K+ doping to boost the Na-ion storage. ACS Appl Mater Interfaces. 2018;10(32):27030. Wu F, Liu L, Yuan YF, Li Y, Bai Y, Li T, Lu J, Wu C. Expanding interlayer spacing of hard carbon by natural K+ doping to boost the Na-ion storage. ACS Appl Mater Interfaces. 2018;10(32):27030.
[21]
go back to reference Saurel D, Orayech B, Xiao BW, Carriazo D, Li XL, Rojo T. From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization. Adv Energy Mater. 2018;8(17):1703268. Saurel D, Orayech B, Xiao BW, Carriazo D, Li XL, Rojo T. From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization. Adv Energy Mater. 2018;8(17):1703268.
[22]
go back to reference Wang ZH, Feng X, Bai Y, Yang HY, Dong RQ, Wang XR, Xu HJ, Wang QY, Li H, Gao HC, Wu C. Probing the energy storage mechanism of quasi-metallic Na in hard carbon for sodium-ion batteries. Adv Energy Mater. 2021;11(11):2003854. Wang ZH, Feng X, Bai Y, Yang HY, Dong RQ, Wang XR, Xu HJ, Wang QY, Li H, Gao HC, Wu C. Probing the energy storage mechanism of quasi-metallic Na in hard carbon for sodium-ion batteries. Adv Energy Mater. 2021;11(11):2003854.
[23]
go back to reference Qiu S, Xiao LF, Sushko ML, Han KS, Shao YY, Yan MY, Liang XM, Mai LQ, Feng JW, Cao YL, Ai XP, Yang HX, Liu J. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv Energy Mater. 2017;7(17):1700403. Qiu S, Xiao LF, Sushko ML, Han KS, Shao YY, Yan MY, Liang XM, Mai LQ, Feng JW, Cao YL, Ai XP, Yang HX, Liu J. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv Energy Mater. 2017;7(17):1700403.
[24]
go back to reference Wahid M, Gawli Y, Puthusseri D, Kumar A, Shelke MV, Ogale S. Nutty carbon: morphology replicating hard carbon from walnut shell for Na ion battery anode. ACS Omega. 2017;2(7):3601. Wahid M, Gawli Y, Puthusseri D, Kumar A, Shelke MV, Ogale S. Nutty carbon: morphology replicating hard carbon from walnut shell for Na ion battery anode. ACS Omega. 2017;2(7):3601.
[25]
go back to reference Bai Y, Liu YC, Li Y, Ling L, Wu F, Wu C. Mille-feuille shaped hard carbons derived from polyvinylpyrrolidone via environmentally friendly electrostatic spinning for sodium ion battery anodes. RSC Adv. 2017;7(9):5519. Bai Y, Liu YC, Li Y, Ling L, Wu F, Wu C. Mille-feuille shaped hard carbons derived from polyvinylpyrrolidone via environmentally friendly electrostatic spinning for sodium ion battery anodes. RSC Adv. 2017;7(9):5519.
[26]
go back to reference Bai Y, Wang Z, Wu C, Xu R, Wu F, Liu YC, Li H, Li Y, Lu J, Amine K. Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery. ACS Appl Mater Interfaces. 2015;7(9):5598. Bai Y, Wang Z, Wu C, Xu R, Wu F, Liu YC, Li H, Li Y, Lu J, Amine K. Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery. ACS Appl Mater Interfaces. 2015;7(9):5598.
[27]
go back to reference Conder J, Vaulot C, Marino C, Villevieille C, Ghimbeu CM. Chitin and chitosan—structurally related precursors of dissimilar hard carbons for Na-ion battery. ACS Appl Energy Mater. 2019;2(7):4841. Conder J, Vaulot C, Marino C, Villevieille C, Ghimbeu CM. Chitin and chitosan—structurally related precursors of dissimilar hard carbons for Na-ion battery. ACS Appl Energy Mater. 2019;2(7):4841.
[28]
go back to reference Yu KH, Wang XR, Yang HY, Bai Y, Wu C. Insight to defects regulation on sugarcane waste-derived hard carbon anode for sodium-ion batteries. J Energy Chem. 2021;55:499. Yu KH, Wang XR, Yang HY, Bai Y, Wu C. Insight to defects regulation on sugarcane waste-derived hard carbon anode for sodium-ion batteries. J Energy Chem. 2021;55:499.
[29]
go back to reference Yu P, Tang W, Wu FF, Zhang C, Wang ZG. Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review. Rare Met. 2020;39(9):1019. Yu P, Tang W, Wu FF, Zhang C, Wang ZG. Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review. Rare Met. 2020;39(9):1019.
[30]
go back to reference Wang XK, Shi J, Mi LW, Zhai YP, Zhang JY, Feng XM, Wu ZJ, Chen WH. Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium-ion batteries. Rare Met. 2020;39(9):1053. Wang XK, Shi J, Mi LW, Zhai YP, Zhang JY, Feng XM, Wu ZJ, Chen WH. Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium-ion batteries. Rare Met. 2020;39(9):1053.
[31]
go back to reference Wu F, Zhang MH, Bai Y, Wang XR, Dong RQ, Wu C. Lotus seedpod-derived hard carbon with hierarchical porous structure as stable anode for sodium-ion batteries. ACS Appl Mater Interfaces. 2019;11(13):12554. Wu F, Zhang MH, Bai Y, Wang XR, Dong RQ, Wu C. Lotus seedpod-derived hard carbon with hierarchical porous structure as stable anode for sodium-ion batteries. ACS Appl Mater Interfaces. 2019;11(13):12554.
[32]
go back to reference Zhang MH, Li Y, Wu F, Bai Y, Wu C. Boost sodium-ion batteries to commercialization: strategies to enhance initial Coulombic efficiency of hard carbon anode. Nano Energy. 2021;82:105738. Zhang MH, Li Y, Wu F, Bai Y, Wu C. Boost sodium-ion batteries to commercialization: strategies to enhance initial Coulombic efficiency of hard carbon anode. Nano Energy. 2021;82:105738.
[33]
go back to reference Li X, Sun XH, Hu XD, Fan FR, Cai S, Zheng CM, Stucky GD. Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries. Nano Energy. 2020;77:105143. Li X, Sun XH, Hu XD, Fan FR, Cai S, Zheng CM, Stucky GD. Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries. Nano Energy. 2020;77:105143.
[34]
go back to reference Lin QW, Zhang J, Lv W, Ma JB, He YB, Kang FY, Yang QH. A functionalized carbon surface for high-performance sodium-ion storage. Small. 2020;16(15):1902603. Lin QW, Zhang J, Lv W, Ma JB, He YB, Kang FY, Yang QH. A functionalized carbon surface for high-performance sodium-ion storage. Small. 2020;16(15):1902603.
[35]
go back to reference Lin QW, Zhang J, Kong D, Cao TF, Zhang SW, Chen XR, Tao Y, Lv W, Kang FY, Yang QH. Deactivating defects in graphenes with Al2O3 nanoclusters to produce long-life and high-rate sodium-ion batteries. Adv Energy Mater. 2018;9(1):1803078. Lin QW, Zhang J, Kong D, Cao TF, Zhang SW, Chen XR, Tao Y, Lv W, Kang FY, Yang QH. Deactivating defects in graphenes with Al2O3 nanoclusters to produce long-life and high-rate sodium-ion batteries. Adv Energy Mater. 2018;9(1):1803078.
[36]
go back to reference Xie HJ, Wu ZL, Wang ZY, Qin N, Li YZ, Cao YL, Lu ZG. Solid electrolyte interface stabilization via surface oxygen species functionalization in hard carbon for superior performance sodium-ion batteries. J Mater Chem A. 2020;8(7):3606. Xie HJ, Wu ZL, Wang ZY, Qin N, Li YZ, Cao YL, Lu ZG. Solid electrolyte interface stabilization via surface oxygen species functionalization in hard carbon for superior performance sodium-ion batteries. J Mater Chem A. 2020;8(7):3606.
[37]
go back to reference Li YM, Xu SY, Wu XY, Yu JZ, Wang YS, Hu YS, Li H, Chen LQ, Huang XJ. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J Mater Chem A. 2015;3(1):71. Li YM, Xu SY, Wu XY, Yu JZ, Wang YS, Hu YS, Li H, Chen LQ, Huang XJ. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J Mater Chem A. 2015;3(1):71.
[38]
go back to reference Ponrouch A, Palacín MR. On the high and low temperature performances of Na-ion battery materials: hard carbon as a case study. Electrochem Commun. 2015;54:51. Ponrouch A, Palacín MR. On the high and low temperature performances of Na-ion battery materials: hard carbon as a case study. Electrochem Commun. 2015;54:51.
[39]
go back to reference Lu HY, Chen XY, Jia YL, Chen H, Wang YX, Ai XP, Yang HX, Cao YL. Engineering Al2O3 atomic layer deposition: enhanced hard carbon-electrolyte interface towards practical sodium ion batteries. Nano Energy. 2019;64:103903. Lu HY, Chen XY, Jia YL, Chen H, Wang YX, Ai XP, Yang HX, Cao YL. Engineering Al2O3 atomic layer deposition: enhanced hard carbon-electrolyte interface towards practical sodium ion batteries. Nano Energy. 2019;64:103903.
[40]
go back to reference Heng S, Cao Z, Wang Y, Qu QT, Zhu GB, Shen M, Zheng HH. In situ transformed solid electrolyte interphase by implanting a 4-vinylbenzoic acid nanolayer on the natural graphite surface. ACS Appl Mater Interfaces. 2020;12(29):33408. Heng S, Cao Z, Wang Y, Qu QT, Zhu GB, Shen M, Zheng HH. In situ transformed solid electrolyte interphase by implanting a 4-vinylbenzoic acid nanolayer on the natural graphite surface. ACS Appl Mater Interfaces. 2020;12(29):33408.
[41]
go back to reference Heng S, Shan X, Wang W, Wang Y, Zhu GB, Qu QT, Zheng HH. Controllable solid electrolyte interphase precursor for stabilizing natural graphite anode in lithium ion batteries. Carbon. 2020;159:390. Heng S, Shan X, Wang W, Wang Y, Zhu GB, Qu QT, Zheng HH. Controllable solid electrolyte interphase precursor for stabilizing natural graphite anode in lithium ion batteries. Carbon. 2020;159:390.
[42]
go back to reference Li Y, Yuan YF, Bai Y, Liu YC, Wang ZH, Li LM, Wu F, Amine K, Wu C, Lu J. Insights into the Na+ storage mechanism of phosphorus-functionalized hard carbon as ultrahigh capacity anodes. Adv Energy Mater. 2018;8(18):1702781. Li Y, Yuan YF, Bai Y, Liu YC, Wang ZH, Li LM, Wu F, Amine K, Wu C, Lu J. Insights into the Na+ storage mechanism of phosphorus-functionalized hard carbon as ultrahigh capacity anodes. Adv Energy Mater. 2018;8(18):1702781.
[43]
go back to reference Carboni M, Manzi J, Armstrong AR, Billaud J, Brutti S, Younesi R. Analysis of the solid electrolyte interphase on hard carbon electrodes in sodium-ion batteries. ChemElectroChem. 2019;6:1745. Carboni M, Manzi J, Armstrong AR, Billaud J, Brutti S, Younesi R. Analysis of the solid electrolyte interphase on hard carbon electrodes in sodium-ion batteries. ChemElectroChem. 2019;6:1745.
[44]
go back to reference Xiao BW, Soto FA, Gu M, Han KS, Song JH, Wang H, Engelhard MH, Murugesan V, Mueller KT, Reed D, Sprenkle VL, Balbuena PB, Li XL. Lithium-pretreated hard carbon as high-performance sodium-ion battery anodes. Adv Energy Mater. 2018;8(24):1801441. Xiao BW, Soto FA, Gu M, Han KS, Song JH, Wang H, Engelhard MH, Murugesan V, Mueller KT, Reed D, Sprenkle VL, Balbuena PB, Li XL. Lithium-pretreated hard carbon as high-performance sodium-ion battery anodes. Adv Energy Mater. 2018;8(24):1801441.
[45]
go back to reference Shi Q, Liu WJ, Qu QT, Gao TQ, Wang Y, Liu G, Battaglia VS, Zheng HH. Robust solid/electrolyte interphase on graphite anode to suppress lithium inventory loss in lithium-ion batterie. Carbon. 2017;111:291. Shi Q, Liu WJ, Qu QT, Gao TQ, Wang Y, Liu G, Battaglia VS, Zheng HH. Robust solid/electrolyte interphase on graphite anode to suppress lithium inventory loss in lithium-ion batterie. Carbon. 2017;111:291.
[46]
go back to reference Heng SH, Shi Q, Zheng XY, Wang Y, Qu QT, Liu G, Battaglia VS, Zheng HH. An organic-skinned secondary coating for carbon-coated LiFePO4 cathode of high electrochemical performances. Electrochim Acta. 2017;258(20):1244. Heng SH, Shi Q, Zheng XY, Wang Y, Qu QT, Liu G, Battaglia VS, Zheng HH. An organic-skinned secondary coating for carbon-coated LiFePO4 cathode of high electrochemical performances. Electrochim Acta. 2017;258(20):1244.
Metadata
Title
Surface engineering based on in situ electro-polymerization to boost the initial Coulombic efficiency of hard carbon anode for sodium-ion battery
Authors
Cheng-Xin Yu
Yu Li
Zhao-Hua Wang
Xin-Ran Wang
Ying Bai
Chuan Wu
Publication date
22-01-2022
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 5/2022
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01893-z

Other articles of this Issue 5/2022

Rare Metals 5/2022 Go to the issue

Premium Partners