Skip to main content
Top
Published in: Rare Metals 5/2022

21-02-2022 | Letter

Inhomogeneous strain and doping of transferred CVD-grown graphene

Authors: Yu-Ting Niu, Fang-Zhu Qing, Xue-Song Li, Bo Peng

Published in: Rare Metals | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
[1]
go back to reference Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008;146(9–10):351.CrossRef Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008;146(9–10):351.CrossRef
[2]
go back to reference Nagashio K, Yamashita T, Nishimura T, Kita K, Toriumi A. Electrical transport properties of graphene on SiO2 with specific surface structures. J Appl Phys. 2011;110(2):024513.CrossRef Nagashio K, Yamashita T, Nishimura T, Kita K, Toriumi A. Electrical transport properties of graphene on SiO2 with specific surface structures. J Appl Phys. 2011;110(2):024513.CrossRef
[3]
go back to reference Xia F, Farmer DB, Lin YM, Avouris P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 2010;10(2):715.CrossRef Xia F, Farmer DB, Lin YM, Avouris P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 2010;10(2):715.CrossRef
[4]
go back to reference Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol. 2010;5(8):574.CrossRef Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol. 2010;5(8):574.CrossRef
[5]
go back to reference He B, Ren YX, Dai TJ, Hou S, Liu XZ. Characterization and performance of graphene–PbSe thin film heterojunction. Rare Met. 2021;40(1):219.CrossRef He B, Ren YX, Dai TJ, Hou S, Liu XZ. Characterization and performance of graphene–PbSe thin film heterojunction. Rare Met. 2021;40(1):219.CrossRef
[6]
go back to reference Dai C, Sun G, Hu L, Xiao Y, Zhang Z, Qu L. Recent progress in graphene-based electrodes for flexible batteries. InfoMat. 2019;2(3):509.CrossRef Dai C, Sun G, Hu L, Xiao Y, Zhang Z, Qu L. Recent progress in graphene-based electrodes for flexible batteries. InfoMat. 2019;2(3):509.CrossRef
[7]
go back to reference Fan YY, Tu HL, Pang Y, Wei F, Zhao HB, Yang Y, Ren TL. Au-decorated porous structure graphene with enhanced sensing performance for low-concentration NO2 detection. Rare Met. 2020;39(6):651.CrossRef Fan YY, Tu HL, Pang Y, Wei F, Zhao HB, Yang Y, Ren TL. Au-decorated porous structure graphene with enhanced sensing performance for low-concentration NO2 detection. Rare Met. 2020;39(6):651.CrossRef
[8]
go back to reference Pereira VM, Castro Neto AH. Strain engineering of graphene’s electronic structure. Phys Rev Lett. 2009;103(4):046801.CrossRef Pereira VM, Castro Neto AH. Strain engineering of graphene’s electronic structure. Phys Rev Lett. 2009;103(4):046801.CrossRef
[9]
go back to reference Lee YR, Huang JX, Lin JC, Lee JR. Study of the substrate-induced strain of as-grown graphene on Cu (1 0 0) using temperature-dependent Raman spectroscopy: estimating the mode Grüneisen parameter with temperature. J Phys Chem C. 2017;121(49):27427.CrossRef Lee YR, Huang JX, Lin JC, Lee JR. Study of the substrate-induced strain of as-grown graphene on Cu (1 0 0) using temperature-dependent Raman spectroscopy: estimating the mode Grüneisen parameter with temperature. J Phys Chem C. 2017;121(49):27427.CrossRef
[10]
go back to reference Hu ZY, Sinha DP, Lee JU, Liehr M. Substrate dielectric effects on graphene field effect transistors. J Appl Phys. 2014;115(19):194507.CrossRef Hu ZY, Sinha DP, Lee JU, Liehr M. Substrate dielectric effects on graphene field effect transistors. J Appl Phys. 2014;115(19):194507.CrossRef
[11]
go back to reference Guinea F, Katsnelson MI, Geim AK. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat Phys. 2009;6(1):30.CrossRef Guinea F, Katsnelson MI, Geim AK. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat Phys. 2009;6(1):30.CrossRef
[12]
go back to reference Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C, Lau CN. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat Nanotechnol. 2009;4(9):562.CrossRef Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C, Lau CN. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat Nanotechnol. 2009;4(9):562.CrossRef
[13]
go back to reference Frank O, Vejpravova J, Holy V, Kavan L, Kalbac M. Interaction between graphene and copper substrate: the role of lattice orientation. Carbon. 2014;68:440.CrossRef Frank O, Vejpravova J, Holy V, Kavan L, Kalbac M. Interaction between graphene and copper substrate: the role of lattice orientation. Carbon. 2014;68:440.CrossRef
[14]
go back to reference Bendiab N, Renard J, Schwarz C, Reserbat-Plantey A, Djevahirdjian L, Bouchiat V, Coraux J, Marty L. Unravelling external perturbation effects on the optical phonon response of graphene. J Raman Spectrosc. 2018;49(1):130.CrossRef Bendiab N, Renard J, Schwarz C, Reserbat-Plantey A, Djevahirdjian L, Bouchiat V, Coraux J, Marty L. Unravelling external perturbation effects on the optical phonon response of graphene. J Raman Spectrosc. 2018;49(1):130.CrossRef
[15]
go back to reference Yang S, Chen Y, Jiang C. Strain engineering of two-dimensional materials: methods, properties, and applications. InfoMat. 2021;3(4):397.CrossRef Yang S, Chen Y, Jiang C. Strain engineering of two-dimensional materials: methods, properties, and applications. InfoMat. 2021;3(4):397.CrossRef
[16]
go back to reference Li BW, Luo D, Zhu L, Zhang X, Jin S, Huang M, Ding F, Ruoff RS. Orientation-dependent strain relaxation and chemical functionalization of graphene on a Cu(111) foil. Adv Mater. 2018;30(10):1706504.CrossRef Li BW, Luo D, Zhu L, Zhang X, Jin S, Huang M, Ding F, Ruoff RS. Orientation-dependent strain relaxation and chemical functionalization of graphene on a Cu(111) foil. Adv Mater. 2018;30(10):1706504.CrossRef
[17]
go back to reference Costa SD, Ek Weis J, Frank O, Kalbac M. Temperature and face dependent copper–graphene interactions. Carbon. 2015;93:793.CrossRef Costa SD, Ek Weis J, Frank O, Kalbac M. Temperature and face dependent copper–graphene interactions. Carbon. 2015;93:793.CrossRef
[18]
go back to reference Chaitoglou S, Bertran E. Control of the strain in chemical vapor deposition-grown graphene over copper via H2 flow. J Phys Chem C. 2016;120(44):25572.CrossRef Chaitoglou S, Bertran E. Control of the strain in chemical vapor deposition-grown graphene over copper via H2 flow. J Phys Chem C. 2016;120(44):25572.CrossRef
[19]
go back to reference Lee U, Han Y, Lee S, Kim JS, Lee YH, Kim UJ, Son H. Time evolution studies on strain and doping of graphene grown on a copper substrate using Raman spectroscopy. ACS Nano. 2020;14(1):919.CrossRef Lee U, Han Y, Lee S, Kim JS, Lee YH, Kim UJ, Son H. Time evolution studies on strain and doping of graphene grown on a copper substrate using Raman spectroscopy. ACS Nano. 2020;14(1):919.CrossRef
[20]
go back to reference Pirkle A, Chan J, Venugopal A, Hinojos D, Magnuson CW, McDonnell S, Colombo L, Vogel EM, Ruoff RS, Wallace RM. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl Phys Lett. 2011;99(12):122108.CrossRef Pirkle A, Chan J, Venugopal A, Hinojos D, Magnuson CW, McDonnell S, Colombo L, Vogel EM, Ruoff RS, Wallace RM. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl Phys Lett. 2011;99(12):122108.CrossRef
[21]
go back to reference Ahn Y, Kim H, Kim YH, Yi Y, Kim SI. Procedure of removing polymer residues and its influences on electronic and structural characteristics of graphene. Appl Phys Lett. 2013;102(9):091602.CrossRef Ahn Y, Kim H, Kim YH, Yi Y, Kim SI. Procedure of removing polymer residues and its influences on electronic and structural characteristics of graphene. Appl Phys Lett. 2013;102(9):091602.CrossRef
[22]
go back to reference Alyobi M, Barnett C, Cobley R. Effects of thermal annealing on the properties of mechanically exfoliated suspended and on-substrate few-layer graphene. Curr Comput-Aided Drug Des. 2017;7(11):349. Alyobi M, Barnett C, Cobley R. Effects of thermal annealing on the properties of mechanically exfoliated suspended and on-substrate few-layer graphene. Curr Comput-Aided Drug Des. 2017;7(11):349.
[23]
go back to reference Wang X, Dolocan A, Chou H, Tao L, Dick A, Akinwande D, Willson CG. Direct observation of poly(methyl methacrylate) removal from a graphene surface. Chem Mater. 2017;29(5):2033.CrossRef Wang X, Dolocan A, Chou H, Tao L, Dick A, Akinwande D, Willson CG. Direct observation of poly(methyl methacrylate) removal from a graphene surface. Chem Mater. 2017;29(5):2033.CrossRef
[24]
go back to reference Robertson AW, Warner JH. Hexagonal single crystal domains of few-layer graphene on copper foils. Nano Lett. 2011;11(3):1182.CrossRef Robertson AW, Warner JH. Hexagonal single crystal domains of few-layer graphene on copper foils. Nano Lett. 2011;11(3):1182.CrossRef
[25]
go back to reference Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 2009;324(5932):1312.CrossRef Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 2009;324(5932):1312.CrossRef
[26]
go back to reference Lazzeri M, Mauri F. Nonadiabatic Kohn anomaly in a doped graphene monolayer. Phys Rev Lett. 2006;97(26):266407.CrossRef Lazzeri M, Mauri F. Nonadiabatic Kohn anomaly in a doped graphene monolayer. Phys Rev Lett. 2006;97(26):266407.CrossRef
[27]
go back to reference Mohiuddin TMG, Lombardo A, Nair RR, Bonetti A, Savini G, Jalil R, Bonini N, Basko DM, Galiotis C, Marzari N, Novoselov KS, Geim AK, Ferrari AC. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys Rev B. 2009;79(20):205433.CrossRef Mohiuddin TMG, Lombardo A, Nair RR, Bonetti A, Savini G, Jalil R, Bonini N, Basko DM, Galiotis C, Marzari N, Novoselov KS, Geim AK, Ferrari AC. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys Rev B. 2009;79(20):205433.CrossRef
[28]
go back to reference Huang M, Yan H, Heinz TF, Hone J. Probing strain-induced electronic structure change in graphene by Raman spectroscopy. Nano Lett. 2010;10(10):4074.CrossRef Huang M, Yan H, Heinz TF, Hone J. Probing strain-induced electronic structure change in graphene by Raman spectroscopy. Nano Lett. 2010;10(10):4074.CrossRef
[29]
go back to reference Huang M, Yan H, Chen C, Song D, Heinz TF, Hone J. Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proc Natl Acad Sci U S A. 2009;106(18):7304.CrossRef Huang M, Yan H, Chen C, Song D, Heinz TF, Hone J. Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proc Natl Acad Sci U S A. 2009;106(18):7304.CrossRef
[30]
go back to reference Lee JE, Ahn G, Shim J, Lee YS, Ryu S. Optical separation of mechanical strain from charge doping in graphene. Nat Commun. 2012;3:1024.CrossRef Lee JE, Ahn G, Shim J, Lee YS, Ryu S. Optical separation of mechanical strain from charge doping in graphene. Nat Commun. 2012;3:1024.CrossRef
[31]
go back to reference Ding F, Ji H, Chen Y, Herklotz A, Dorr K, Mei Y, Rastelli A, Schmidt OG. Stretchable graphene: a close look at fundamental parameters through biaxial straining. Nano Lett. 2010;10(9):3453.CrossRef Ding F, Ji H, Chen Y, Herklotz A, Dorr K, Mei Y, Rastelli A, Schmidt OG. Stretchable graphene: a close look at fundamental parameters through biaxial straining. Nano Lett. 2010;10(9):3453.CrossRef
[32]
go back to reference Das A, Chakraborty B, Piscanec S, Pisana S, Sood AK, Ferrari AC. Phonon renormalization in doped bilayer graphene. Phys Rev B. 2009;79(15):155417.CrossRef Das A, Chakraborty B, Piscanec S, Pisana S, Sood AK, Ferrari AC. Phonon renormalization in doped bilayer graphene. Phys Rev B. 2009;79(15):155417.CrossRef
[33]
go back to reference Armano A, Buscarino G, Cannas M, Gelardi FM, Giannazzo F, Schilirò E, Agnello S. Monolayer graphene doping and strain dynamics induced by thermal treatments in controlled atmosphere. Carbon. 2018;127:270.CrossRef Armano A, Buscarino G, Cannas M, Gelardi FM, Giannazzo F, Schilirò E, Agnello S. Monolayer graphene doping and strain dynamics induced by thermal treatments in controlled atmosphere. Carbon. 2018;127:270.CrossRef
[34]
go back to reference Casiraghi C. Probing disorder and charged impurities in graphene by Raman spectroscopy. Phys Status Solidi RRL. 2009;3(6):175.CrossRef Casiraghi C. Probing disorder and charged impurities in graphene by Raman spectroscopy. Phys Status Solidi RRL. 2009;3(6):175.CrossRef
[35]
go back to reference Das A, Pisana S, Chakraborty B, Piscanec S, Saha SK, Waghmare UV, Novoselov KS, Krishnamurthy HR, Geim AK, Ferrari AC, Sood AK. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol. 2008;3(4):210.CrossRef Das A, Pisana S, Chakraborty B, Piscanec S, Saha SK, Waghmare UV, Novoselov KS, Krishnamurthy HR, Geim AK, Ferrari AC, Sood AK. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol. 2008;3(4):210.CrossRef
[36]
go back to reference Pisana S, Lazzeri M, Casiraghi C, Novoselov KS, Geim AK, Ferrari AC, Mauri F. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat Mater. 2007;6(3):198.CrossRef Pisana S, Lazzeri M, Casiraghi C, Novoselov KS, Geim AK, Ferrari AC, Mauri F. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat Mater. 2007;6(3):198.CrossRef
[37]
go back to reference Zabel J, Nair RR, Ott A, Georgiou T, Geim AK, Novoselov KS, Casiraghi C. Raman spectroscopy of graphene and bilayer under biaxial strain: bubbles and balloons. Nano Lett. 2012;12(2):617.CrossRef Zabel J, Nair RR, Ott A, Georgiou T, Geim AK, Novoselov KS, Casiraghi C. Raman spectroscopy of graphene and bilayer under biaxial strain: bubbles and balloons. Nano Lett. 2012;12(2):617.CrossRef
[38]
go back to reference Hattab H, N’Diaye AT, Wall D, Klein C, Jnawali G, Coraux J, Busse C, van Gastel R, Poelsema B, Michely T, Heringdorf FJMZ, Horn-von HM. Interplay of wrinkles, strain, and lattice parameter in graphene on iridium. Nano Lett. 2012;12(2):678.CrossRef Hattab H, N’Diaye AT, Wall D, Klein C, Jnawali G, Coraux J, Busse C, van Gastel R, Poelsema B, Michely T, Heringdorf FJMZ, Horn-von HM. Interplay of wrinkles, strain, and lattice parameter in graphene on iridium. Nano Lett. 2012;12(2):678.CrossRef
[39]
go back to reference Tapasztó L, Dumitrică T, Kim SJ, Nemes-Incze P, Hwang C, Biró LP. Breakdown of continuum mechanics for nanometre-wavelength rippling of graphene. Nat Phys. 2012;8(10):739.CrossRef Tapasztó L, Dumitrică T, Kim SJ, Nemes-Incze P, Hwang C, Biró LP. Breakdown of continuum mechanics for nanometre-wavelength rippling of graphene. Nat Phys. 2012;8(10):739.CrossRef
[40]
go back to reference Bronsgeest MS, Bendiab N, Mathur S, Kimouche A, Johnson HT, Coraux J, Pochet P. Strain relaxation in CVD graphene: wrinkling with shear lag. Nano Lett. 2015;15(8):5098.CrossRef Bronsgeest MS, Bendiab N, Mathur S, Kimouche A, Johnson HT, Coraux J, Pochet P. Strain relaxation in CVD graphene: wrinkling with shear lag. Nano Lett. 2015;15(8):5098.CrossRef
[41]
go back to reference Kang JH, Moon J, Kim DJ, Kim Y, Jo I, Jeon C, Lee J, Hong BH. Strain relaxation of graphene layers by Cu surface roughening. Nano Lett. 2016;16(10):5993.CrossRef Kang JH, Moon J, Kim DJ, Kim Y, Jo I, Jeon C, Lee J, Hong BH. Strain relaxation of graphene layers by Cu surface roughening. Nano Lett. 2016;16(10):5993.CrossRef
[42]
go back to reference Troppenz GV, Gluba MA, Kraft M, Rappich J, Nickel NH. Strain relaxation in graphene grown by chemical vapor deposition. J Appl Phys. 2013;114(21):214312.CrossRef Troppenz GV, Gluba MA, Kraft M, Rappich J, Nickel NH. Strain relaxation in graphene grown by chemical vapor deposition. J Appl Phys. 2013;114(21):214312.CrossRef
[43]
go back to reference Koyama T, Inaba T, Komatsu K, Moriyama S, Shimizu M, Homma Y. Effect of interfacial water formed between graphene and SiO2/Si substrate. Appl Phys Express. 2017;10(7):075102.CrossRef Koyama T, Inaba T, Komatsu K, Moriyama S, Shimizu M, Homma Y. Effect of interfacial water formed between graphene and SiO2/Si substrate. Appl Phys Express. 2017;10(7):075102.CrossRef
[44]
go back to reference Kumar K, Kim YS, Yang EH. The influence of thermal annealing to remove polymeric residue on the electronic doping and morphological characteristics of graphene. Carbon. 2013;65:35.CrossRef Kumar K, Kim YS, Yang EH. The influence of thermal annealing to remove polymeric residue on the electronic doping and morphological characteristics of graphene. Carbon. 2013;65:35.CrossRef
[45]
go back to reference Costa SD, Weis JE, Frank O, Fridrichová M, Kalbac M. Monitoring the doping of graphene on SiO2/Si substrates during the thermal annealing process. RSC Adv. 2016;6(76):72859.CrossRef Costa SD, Weis JE, Frank O, Fridrichová M, Kalbac M. Monitoring the doping of graphene on SiO2/Si substrates during the thermal annealing process. RSC Adv. 2016;6(76):72859.CrossRef
[46]
go back to reference Suzuki S, Orofeo CM, Wang S, Maeda F, Takamura M, Hibino H. Structural Instability of transferred graphene grown by chemical vapor deposition against heating. J Phys Chem C. 2013;117(42):22123.CrossRef Suzuki S, Orofeo CM, Wang S, Maeda F, Takamura M, Hibino H. Structural Instability of transferred graphene grown by chemical vapor deposition against heating. J Phys Chem C. 2013;117(42):22123.CrossRef
[47]
go back to reference Ryu S, Liu L, Berciaud S, Yu YJ, Liu H, Kim P, Flynn GW, Brus LE. Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate. Nano Lett. 2010;10(12):4944.CrossRef Ryu S, Liu L, Berciaud S, Yu YJ, Liu H, Kim P, Flynn GW, Brus LE. Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate. Nano Lett. 2010;10(12):4944.CrossRef
[48]
go back to reference Bom NM, Soares GV, de Oliveira Junior MH, Lopes JMJ, Riechert H, Radtke C. Water incorporation in graphene transferred onto SiO2/Si investigated by isotopic labeling. J Phys Chem C. 2015;120(1):201.CrossRef Bom NM, Soares GV, de Oliveira Junior MH, Lopes JMJ, Riechert H, Radtke C. Water incorporation in graphene transferred onto SiO2/Si investigated by isotopic labeling. J Phys Chem C. 2015;120(1):201.CrossRef
[49]
go back to reference Mounet N, Marzari N. First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys Rev B. 2005;71(20):205214.CrossRef Mounet N, Marzari N. First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys Rev B. 2005;71(20):205214.CrossRef
[50]
go back to reference Yoon D, Son YW, Cheong H. Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. Nano Lett. 2011;11(8):3227.CrossRef Yoon D, Son YW, Cheong H. Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. Nano Lett. 2011;11(8):3227.CrossRef
Metadata
Title
Inhomogeneous strain and doping of transferred CVD-grown graphene
Authors
Yu-Ting Niu
Fang-Zhu Qing
Xue-Song Li
Bo Peng
Publication date
21-02-2022
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 5/2022
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01912-z

Other articles of this Issue 5/2022

Rare Metals 5/2022 Go to the issue

Premium Partners