Skip to main content
Erschienen in: Rare Metals 6/2020

25.04.2020

Au-decorated porous structure graphene with enhanced sensing performance for low-concentration NO2 detection

verfasst von: Yan-Yan Fan, Hai-Ling Tu, Yu Pang, Feng Wei, Hong-Bin Zhao, Yi Yang, Tian-Ling Ren

Erschienen in: Rare Metals | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A recent progress in new emerging two-dimensional (2D) materials has provided promising opportunity for gas sensing in ultra-low detectable concentration. In this work, we have demonstrated a flexible NO2 gas sensor with porous structure graphene on polyethylene terephthalate substrates operating at room temperature. The gas sensor exhibited good performance with response of 1.2% and a fast response time within 30 s after exposure to 50 × 10−9 NO2 gas. As porous structure of graphene increased the surface area, the sensor showed high sensitivity of ppb level for NO2 detection. Au nanoparticles were decorated on the surface of the porous structure graphene skeleton, resulting in an incensement of response compared with pristine graphene. Au nanoparticles-decorated graphene exhibits not only better sensitivity (1.5–1.6 times larger than pristine graphene) for NO2 gas detection, but also fast response. The sensor was found to be robust and sensitive under the cycling bending test, which could also be ascribed to the merits of graphene. This porous structure graphene-based gas sensor is expected to enable a simple and inexpensive flexible gas sensing platform.

Graphic Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Liu X, Cheng S, Liu H, Hu S, Zhang D, Ning H. A survey on gas sensing technology. Sensors. 2012;12(7):9635.CrossRef Liu X, Cheng S, Liu H, Hu S, Zhang D, Ning H. A survey on gas sensing technology. Sensors. 2012;12(7):9635.CrossRef
[2]
Zurück zum Zitat Chatterjee SG, Chatterjee S, Ray AK, Chakraborty AK. Graphene-metal oxide nanohybrids for toxic gas sensor: a review. Sens Actuators. 2015;221(11):1170.CrossRef Chatterjee SG, Chatterjee S, Ray AK, Chakraborty AK. Graphene-metal oxide nanohybrids for toxic gas sensor: a review. Sens Actuators. 2015;221(11):1170.CrossRef
[3]
Zurück zum Zitat Zhang B, Liu G, Cheng M, Gao Y, Zhao L, Li S, Liu F, Yan X, Zhang T, Sun P, Lu G. The preparation of reduced graphene oxide-encapsulated alpha-Fe2O3 hybrid and its outstanding NO2 gas sensing properties at room temperature. Sens Actuators, B. 2018;261(15):252.CrossRef Zhang B, Liu G, Cheng M, Gao Y, Zhao L, Li S, Liu F, Yan X, Zhang T, Sun P, Lu G. The preparation of reduced graphene oxide-encapsulated alpha-Fe2O3 hybrid and its outstanding NO2 gas sensing properties at room temperature. Sens Actuators, B. 2018;261(15):252.CrossRef
[4]
Zurück zum Zitat Ou JZ, Ge W, Carey B, Daeneke T, Rotbart A, Shan W, Wang Y, Fu Z, Chrimes AF, Wiodarski W, Russo SP, Li YX, Kalantar-zadeh K. Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing. ACS Nano. 2015;9(10):10313.CrossRef Ou JZ, Ge W, Carey B, Daeneke T, Rotbart A, Shan W, Wang Y, Fu Z, Chrimes AF, Wiodarski W, Russo SP, Li YX, Kalantar-zadeh K. Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing. ACS Nano. 2015;9(10):10313.CrossRef
[5]
Zurück zum Zitat Pham T, Li G, Bekyarova E, Itkis ME, Mulchandani A. MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano. 2019;13(3):3196.CrossRef Pham T, Li G, Bekyarova E, Itkis ME, Mulchandani A. MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano. 2019;13(3):3196.CrossRef
[6]
Zurück zum Zitat Varghese SS, Lonkar S, Singh KK, Swaminathan S, Abdala A. Recent advances in graphene based gas sensors. Sens Actuators, B. 2015;218(25):160.CrossRef Varghese SS, Lonkar S, Singh KK, Swaminathan S, Abdala A. Recent advances in graphene based gas sensors. Sens Actuators, B. 2015;218(25):160.CrossRef
[7]
Zurück zum Zitat Schwela D. Air pollution and health in urban areas. Rev Environ Health. 2000;15(1–2):13. Schwela D. Air pollution and health in urban areas. Rev Environ Health. 2000;15(1–2):13.
[8]
Zurück zum Zitat Guarnieri M, Balmes JR. Outdoor air pollution and asthma. The Lancet. 2014;383(9928):1581.CrossRef Guarnieri M, Balmes JR. Outdoor air pollution and asthma. The Lancet. 2014;383(9928):1581.CrossRef
[9]
Zurück zum Zitat Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS. Detection of individual gas molecules adsorbed on graphene. Nat Mater. 2007;6(9):652.CrossRef Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS. Detection of individual gas molecules adsorbed on graphene. Nat Mater. 2007;6(9):652.CrossRef
[10]
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666.CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666.CrossRef
[11]
Zurück zum Zitat Perreault F, de Faria AF, Elimelech M. Environmental applications of graphene-based nanomaterials. Chem Soc Rev. 2015;44(16):5861.CrossRef Perreault F, de Faria AF, Elimelech M. Environmental applications of graphene-based nanomaterials. Chem Soc Rev. 2015;44(16):5861.CrossRef
[12]
Zurück zum Zitat Ricciardella F, Vollebregt S, Polichetti T, Miscuglio M, Alfano B, Miglietta ML, Massera E, Di Francia G, Sarro PM. Effects of graphene defects on gas sensing properties towards NO2 detection. Nanoscale. 2017;9(18):6085.CrossRef Ricciardella F, Vollebregt S, Polichetti T, Miscuglio M, Alfano B, Miglietta ML, Massera E, Di Francia G, Sarro PM. Effects of graphene defects on gas sensing properties towards NO2 detection. Nanoscale. 2017;9(18):6085.CrossRef
[13]
Zurück zum Zitat Meng F, Guo Z, Huang X. Graphene-based hybrids for chemiresistive gas sensors. TrAC Trends Anal Chem. 2015;68:37.CrossRef Meng F, Guo Z, Huang X. Graphene-based hybrids for chemiresistive gas sensors. TrAC Trends Anal Chem. 2015;68:37.CrossRef
[14]
Zurück zum Zitat Jung MW, Myung S, Song W, Kang M, Kim SH, Yang C, Lee SS, Lim J, Park C, Lee J, An K. Novel fabrication of flexible graphene-based chemical sensors with heaters using soft lithographic patterning method. ACS Appl Mater Interfaces. 2014;6(16):13319.CrossRef Jung MW, Myung S, Song W, Kang M, Kim SH, Yang C, Lee SS, Lim J, Park C, Lee J, An K. Novel fabrication of flexible graphene-based chemical sensors with heaters using soft lithographic patterning method. ACS Appl Mater Interfaces. 2014;6(16):13319.CrossRef
[15]
Zurück zum Zitat Yuan W, Liu A, Huang L, Li C, Shi G. High-performance NO2 sensors based on chemically modified graphene. Adv Mater. 2013;25(5):766.CrossRef Yuan W, Liu A, Huang L, Li C, Shi G. High-performance NO2 sensors based on chemically modified graphene. Adv Mater. 2013;25(5):766.CrossRef
[16]
Zurück zum Zitat Paul RK, Badhulika S, Saucedo NM, Mulchandani A. Graphene nanomesh as highly sensitive chemiresistor gas sensor. Anal Chem. 2012;84(19):8171.CrossRef Paul RK, Badhulika S, Saucedo NM, Mulchandani A. Graphene nanomesh as highly sensitive chemiresistor gas sensor. Anal Chem. 2012;84(19):8171.CrossRef
[17]
Zurück zum Zitat Cho B, Yoon J, Lim SK, Kim AR, Kim D, Park S, Kwon J, Lee Y, Lee K, Lee BH, Ko HC, Hahm MG. Chemical sensing of 2D graphene/MoS2 heterostructure device. ACS Appl Mater Interfaces. 2015;7(30):16775.CrossRef Cho B, Yoon J, Lim SK, Kim AR, Kim D, Park S, Kwon J, Lee Y, Lee K, Lee BH, Ko HC, Hahm MG. Chemical sensing of 2D graphene/MoS2 heterostructure device. ACS Appl Mater Interfaces. 2015;7(30):16775.CrossRef
[18]
Zurück zum Zitat Kim YH, Kim SJ, Kim Y, Shim Y, Kim SY, Hong BH, Jang HW. Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending. ACS Nano. 2015;9(10):10453.CrossRef Kim YH, Kim SJ, Kim Y, Shim Y, Kim SY, Hong BH, Jang HW. Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending. ACS Nano. 2015;9(10):10453.CrossRef
[19]
Zurück zum Zitat Yuan W, Shi G. Graphene-based gas sensors. J Phys Chem A. 2013;1(35):10078. Yuan W, Shi G. Graphene-based gas sensors. J Phys Chem A. 2013;1(35):10078.
[20]
Zurück zum Zitat Zhang H, Li Q, Huang J, Du Y, Ruan SC. Reduced graphene oxide/Au nanocomposite for NO2 sensing at low operating temperature. Sensors. 2016;16(7):1152.CrossRef Zhang H, Li Q, Huang J, Du Y, Ruan SC. Reduced graphene oxide/Au nanocomposite for NO2 sensing at low operating temperature. Sensors. 2016;16(7):1152.CrossRef
[21]
Zurück zum Zitat Wu J, Feng S, Li Z, Tao K, Chu J, Miao J, Norford LK. Boosted sensitivity of graphene gas sensor via nanoporous thin film structures. Sens Actuators, B. 2018;255(2):1805.CrossRef Wu J, Feng S, Li Z, Tao K, Chu J, Miao J, Norford LK. Boosted sensitivity of graphene gas sensor via nanoporous thin film structures. Sens Actuators, B. 2018;255(2):1805.CrossRef
[22]
Zurück zum Zitat Li F, Peng H, Xia D, Yang J, Yang K, Yin F, Yuan W. Highly sensitive, selective, and flexible NO2 chemiresistors based on multilevel structured three-dimensional reduced graphene oxide fiber scaffold modified with aminoanthroquinone moieties and Ag nanoparticles. ACS Appl Mater Interfaces. 2019;11(9):9309.CrossRef Li F, Peng H, Xia D, Yang J, Yang K, Yin F, Yuan W. Highly sensitive, selective, and flexible NO2 chemiresistors based on multilevel structured three-dimensional reduced graphene oxide fiber scaffold modified with aminoanthroquinone moieties and Ag nanoparticles. ACS Appl Mater Interfaces. 2019;11(9):9309.CrossRef
[23]
Zurück zum Zitat Vallejos S, Stoycheva T, Umek P, Navio C, Snyders R, Bittencourt C, Llobet E, Blackman C, Moniz S, Correig X. Au nanoparticle-functionalised WO3 nanoneedles and their application in high sensitivity gas sensor devices. Chem Commun. 2011;47(1):565.CrossRef Vallejos S, Stoycheva T, Umek P, Navio C, Snyders R, Bittencourt C, Llobet E, Blackman C, Moniz S, Correig X. Au nanoparticle-functionalised WO3 nanoneedles and their application in high sensitivity gas sensor devices. Chem Commun. 2011;47(1):565.CrossRef
[24]
Zurück zum Zitat Vedala H, Sorescu DC, Kotchey GP, Star A. Chemical sensitivity of graphene edges decorated with metal nanoparticles. Nano Lett. 2011;11(6):2342.CrossRef Vedala H, Sorescu DC, Kotchey GP, Star A. Chemical sensitivity of graphene edges decorated with metal nanoparticles. Nano Lett. 2011;11(6):2342.CrossRef
[25]
Zurück zum Zitat Singhal AV, Charaya H, Lahiri I. Noble metal decorated graphene-based gas sensors and their fabrication: a review. Crit Rev Solid State Mater Sci. 2017;42(6):499.CrossRef Singhal AV, Charaya H, Lahiri I. Noble metal decorated graphene-based gas sensors and their fabrication: a review. Crit Rev Solid State Mater Sci. 2017;42(6):499.CrossRef
[26]
Zurück zum Zitat Yeo JC, Lim CT. Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst Nanoeng. 2016;2:16043.CrossRef Yeo JC, Lim CT. Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst Nanoeng. 2016;2:16043.CrossRef
[27]
Zurück zum Zitat Han ST, Peng H, Sun Q, Venkatesh S, Chung K, Lau SC, Zhou Y, Roy VAL. An overview of the development of flexible sensors. Adv Mater. 2017;29(33):1700375.CrossRef Han ST, Peng H, Sun Q, Venkatesh S, Chung K, Lau SC, Zhou Y, Roy VAL. An overview of the development of flexible sensors. Adv Mater. 2017;29(33):1700375.CrossRef
[28]
Zurück zum Zitat Akinwande D, Petrone N, Hone J. Two-dimensional flexible nanoelectronics. Nat Commun. 2014;5(1):5678.CrossRef Akinwande D, Petrone N, Hone J. Two-dimensional flexible nanoelectronics. Nat Commun. 2014;5(1):5678.CrossRef
[29]
Zurück zum Zitat Sidorov AN, Slawinski GW, Jayatissa AH, Zamborini FP, Sumanasekera GU. A surface-enhanced Raman spectroscopy study of thin graphene sheets functionalized with gold and silver nanostructures by seed-mediated growth. Carbon. 2012;50(2):699.CrossRef Sidorov AN, Slawinski GW, Jayatissa AH, Zamborini FP, Sumanasekera GU. A surface-enhanced Raman spectroscopy study of thin graphene sheets functionalized with gold and silver nanostructures by seed-mediated growth. Carbon. 2012;50(2):699.CrossRef
[30]
Zurück zum Zitat Kumar R, Goel N, Kumar M. UV-activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS Sensors. 2017;2(11):1744.CrossRef Kumar R, Goel N, Kumar M. UV-activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS Sensors. 2017;2(11):1744.CrossRef
[31]
Zurück zum Zitat Randeniya LK, Shi H, Barnard AS, Fang J, Martin PJ, Ostrikov KK. Harnessing the influence of reactive edges and defects of graphene substrates for achieving complete cycle of room-temperature molecular sensing. Small. 2013;9(33):3993.CrossRef Randeniya LK, Shi H, Barnard AS, Fang J, Martin PJ, Ostrikov KK. Harnessing the influence of reactive edges and defects of graphene substrates for achieving complete cycle of room-temperature molecular sensing. Small. 2013;9(33):3993.CrossRef
[32]
Zurück zum Zitat Liu B, Liu X, Yuan Z, Jiang Y, Su Y, Ma J, Tai H. A flexible NO2 gas sensor based on polypyrrole/nitrogen-doped multiwall carbon nanotube operating at room temperature. Sensors and Actuators B: Chemical. 2019;295:86.CrossRef Liu B, Liu X, Yuan Z, Jiang Y, Su Y, Ma J, Tai H. A flexible NO2 gas sensor based on polypyrrole/nitrogen-doped multiwall carbon nanotube operating at room temperature. Sensors and Actuators B: Chemical. 2019;295:86.CrossRef
[33]
Zurück zum Zitat Yaqoob U, Uddin ASMI, Chung G. A high-performance flexible NO2 sensor based on WO3 NPs decorated on MWCNTs and RGO hybrids on PI/PET substrates. Sensors and Actuators B: Chemical. 2016;224:738.CrossRef Yaqoob U, Uddin ASMI, Chung G. A high-performance flexible NO2 sensor based on WO3 NPs decorated on MWCNTs and RGO hybrids on PI/PET substrates. Sensors and Actuators B: Chemical. 2016;224:738.CrossRef
[34]
Zurück zum Zitat Yang G, Lee C, Kim J, Ren F, Pearton SJ. Flexible graphene-based chemical sensors on paper substrates. Phys Chem Chem Phys. 2013;15(6):1798.CrossRef Yang G, Lee C, Kim J, Ren F, Pearton SJ. Flexible graphene-based chemical sensors on paper substrates. Phys Chem Chem Phys. 2013;15(6):1798.CrossRef
Metadaten
Titel
Au-decorated porous structure graphene with enhanced sensing performance for low-concentration NO2 detection
verfasst von
Yan-Yan Fan
Hai-Ling Tu
Yu Pang
Feng Wei
Hong-Bin Zhao
Yi Yang
Tian-Ling Ren
Publikationsdatum
25.04.2020
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 6/2020
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01397-2

Weitere Artikel der Ausgabe 6/2020

Rare Metals 6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.