Skip to main content
Erschienen in: Rare Metals 6/2020

16.04.2020

Tailoring thermoelectric properties of Zr0.43Hf0.57NiSn half-Heusler compound by defect engineering

verfasst von: Krzysztof Gałązka, Wenjie Xie, Sascha Populoh, Myriam H. Aguirre, Songhak Yoon, Gesine Büttner, Anke Weidenkaff

Erschienen in: Rare Metals | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The thermoelectric transport properties of Zr0.43Hf0.57NiSn half-Heusler compounds were investigated for samples sintered with different spark plasma sintering (SPS) periods: 8, 32 and 72 min. By means of scanning transmission electron microscopy with a high-angular annular dark-field detector (STEM-HAADF), it was found that sintering time affected the defect concentration, namely the amount of Ni interstitial atoms, and created locally ordered inclusions of full-Heusler phase. The structural information, phase composition and electrical transport properties could be consistently explained by the assumption that Ni interstitials give rise to an impurity band situated about 100 meV below the bottom of the conduction band via a self-doping behavior. The impurity band was found to merge with the conduction band for the sample with intermediate SPS time. The effect was ascribed to the gradual dissolution of full-Heusler phase inclusions and production of interstitial Ni defects, which eventually vanished for the sample with the longest sintering time. It was demonstrated that the modification of the density of states near the edge of the conduction band and enhanced overall charge carrier concentration provided by defect engineering led to overall 26% increase in the thermoelectric figure of merit (ZT) with respect to the other samples.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Xie W, Weidenkaff A, Tang X, Zhang Q, Poon J, Tritt TM. Recent advances in nanostructured thermoelectric half-Heusler compounds. Nanomaterials. 2012;2(4):379.CrossRef Xie W, Weidenkaff A, Tang X, Zhang Q, Poon J, Tritt TM. Recent advances in nanostructured thermoelectric half-Heusler compounds. Nanomaterials. 2012;2(4):379.CrossRef
[2]
Zurück zum Zitat Uher C, Yang J, Hu S, Morelli D, Meisner G. Transport properties of pure and doped MNiSn (M = Zr, Hf). Phys Rev B. 1999;59(13):8615.CrossRef Uher C, Yang J, Hu S, Morelli D, Meisner G. Transport properties of pure and doped MNiSn (M = Zr, Hf). Phys Rev B. 1999;59(13):8615.CrossRef
[3]
Zurück zum Zitat Shen Q, Chen L, Goto T, Hirai T, Yang J, Meisner G, Uher C. Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. Appl Phys Lett. 2001;79(25):4165.CrossRef Shen Q, Chen L, Goto T, Hirai T, Yang J, Meisner G, Uher C. Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. Appl Phys Lett. 2001;79(25):4165.CrossRef
[4]
Zurück zum Zitat Gałązka K, Populoh S, Xie W, Yoon S, Saucke G, Hulliger J, Weidenkaff A. Improved thermoelectric performance of (Zr0.3Hf0.7)NiSn half-Heusler compounds by Ta substitution. J Appl Phys. 2014;115(18):183704.CrossRef Gałązka K, Populoh S, Xie W, Yoon S, Saucke G, Hulliger J, Weidenkaff A. Improved thermoelectric performance of (Zr0.3Hf0.7)NiSn half-Heusler compounds by Ta substitution. J Appl Phys. 2014;115(18):183704.CrossRef
[5]
Zurück zum Zitat Ogut S, Rabe K. Band gap and stability in the ternary intermetallic compounds NiSnM (M = Ti, Zr, Hf): a first-principles study. Phys Rev B. 1995;51(16):10443.CrossRef Ogut S, Rabe K. Band gap and stability in the ternary intermetallic compounds NiSnM (M = Ti, Zr, Hf): a first-principles study. Phys Rev B. 1995;51(16):10443.CrossRef
[6]
Zurück zum Zitat Colinet C, Jund P, Tedenac J. NiTiSn a material of technological interest: ab initio calculations of phase stability and defects. Intermetallics. 2014;46:103.CrossRef Colinet C, Jund P, Tedenac J. NiTiSn a material of technological interest: ab initio calculations of phase stability and defects. Intermetallics. 2014;46:103.CrossRef
[7]
Zurück zum Zitat Miyazaki H, Nakano T, Inukai M, Soda K, Izumi Y, Muro T, Kim J, Takata M, Matsunami M, Kimura S, Nishino Y. Electronic and local crystal structures of the ZrNiSn Half-Heusler thermoelectric material. Mater Trans. 2014;55(8):1209.CrossRef Miyazaki H, Nakano T, Inukai M, Soda K, Izumi Y, Muro T, Kim J, Takata M, Matsunami M, Kimura S, Nishino Y. Electronic and local crystal structures of the ZrNiSn Half-Heusler thermoelectric material. Mater Trans. 2014;55(8):1209.CrossRef
[8]
Zurück zum Zitat Do D, Mahanti S, Pulikkotil J. Electronic structure of Zr–Ni–Sn systems: role of clustering and nanostructures in half-Heusler and Heusler limits. J Phys Condens Mater. 2014;26(27):275501.CrossRef Do D, Mahanti S, Pulikkotil J. Electronic structure of Zr–Ni–Sn systems: role of clustering and nanostructures in half-Heusler and Heusler limits. J Phys Condens Mater. 2014;26(27):275501.CrossRef
[9]
Zurück zum Zitat Chai Y, Kimura Y. Nanosized precipitates in half-Heusler TiNiSn alloy. Appl Phys Lett. 2012;100(3):033114.CrossRef Chai Y, Kimura Y. Nanosized precipitates in half-Heusler TiNiSn alloy. Appl Phys Lett. 2012;100(3):033114.CrossRef
[10]
Zurück zum Zitat Chai Y, Kimura Y. Microstructure evolution of nanoprecipitates in half-Heusler TiNiSn alloys. Acta Mater. 2013;61(18):6684.CrossRef Chai Y, Kimura Y. Microstructure evolution of nanoprecipitates in half-Heusler TiNiSn alloys. Acta Mater. 2013;61(18):6684.CrossRef
[11]
Zurück zum Zitat Chai Y, Yoshioka K, Kimura Y. Intrinsic point defects in thermoelectric half-Heusler alloys. Scr Mater. 2014;83:13.CrossRef Chai Y, Yoshioka K, Kimura Y. Intrinsic point defects in thermoelectric half-Heusler alloys. Scr Mater. 2014;83:13.CrossRef
[12]
Zurück zum Zitat Sahoo P, Liu Y, Makongo J, Su X, Kim S, Takas N, Chi H, Uher C, Pan X, Poudeu P. Enhancing thermopower and hole mobility in bulk p-type half-Heuslers using full-Heusler nanostructures. Nanoscale. 2013;5(19):9419.CrossRef Sahoo P, Liu Y, Makongo J, Su X, Kim S, Takas N, Chi H, Uher C, Pan X, Poudeu P. Enhancing thermopower and hole mobility in bulk p-type half-Heuslers using full-Heusler nanostructures. Nanoscale. 2013;5(19):9419.CrossRef
[13]
Zurück zum Zitat Xie H, Mi J, Hu L, Lock N, Chirstensen M, Fu C, Iversen B, Zhao X, Zhu T. Interrelation between atomic switching disorder and thermoelectric properties of ZrNiSn half-Heusler compounds. CrystEngComm. 2012;14(13):4467.CrossRef Xie H, Mi J, Hu L, Lock N, Chirstensen M, Fu C, Iversen B, Zhao X, Zhu T. Interrelation between atomic switching disorder and thermoelectric properties of ZrNiSn half-Heusler compounds. CrystEngComm. 2012;14(13):4467.CrossRef
[14]
Zurück zum Zitat Morimura T, Hasaka M. ALCHEMI for coexistent Heusler and half-Heusler phases in TiNi1.5Sn. Ultramicroscopy. 2006;106(7):553.CrossRef Morimura T, Hasaka M. ALCHEMI for coexistent Heusler and half-Heusler phases in TiNi1.5Sn. Ultramicroscopy. 2006;106(7):553.CrossRef
[15]
Zurück zum Zitat Xie H, Wang H, Fu C, Liu Y, Snyder G, Zhao X, Zhu T. The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials. Sci Rep. 2014;4:6888.CrossRef Xie H, Wang H, Fu C, Liu Y, Snyder G, Zhao X, Zhu T. The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials. Sci Rep. 2014;4:6888.CrossRef
[16]
Zurück zum Zitat Zhou M, Chen L, Feng C, Wang D, Li J. Moderate-temperature thermoelectric properties of TiCoSb-based half-Heusler compounds Ti1−xTaxCoSb. J Appl Phys. 2007;101(11):113714.CrossRef Zhou M, Chen L, Feng C, Wang D, Li J. Moderate-temperature thermoelectric properties of TiCoSb-based half-Heusler compounds Ti1−xTaxCoSb. J Appl Phys. 2007;101(11):113714.CrossRef
[17]
Zurück zum Zitat Le Bail A, Duroy H, Fourquet J. Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater Res Bull. 1988;23(3):447.CrossRef Le Bail A, Duroy H, Fourquet J. Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater Res Bull. 1988;23(3):447.CrossRef
[18]
Zurück zum Zitat Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys B. 1993;192(1–2):55.CrossRef Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys B. 1993;192(1–2):55.CrossRef
[19]
Zurück zum Zitat Stokes A, Wilson A. The diffraction of X rays by distorted crystal aggregates—I. Proc Phys Soc Lond. 1944;56(3):174.CrossRef Stokes A, Wilson A. The diffraction of X rays by distorted crystal aggregates—I. Proc Phys Soc Lond. 1944;56(3):174.CrossRef
[20]
Zurück zum Zitat Thompson P, Cox D, Hastings J. Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3. J Appl Crystallogr. 1987;20(2):79.CrossRef Thompson P, Cox D, Hastings J. Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3. J Appl Crystallogr. 1987;20(2):79.CrossRef
[21]
Zurück zum Zitat Schwall M, Balke B. Niobium substitution in Zr0.5Hf0.5NiSn based Heusler compounds for high power factors. Appl Phys Lett. 2011;98(4):042106.CrossRef Schwall M, Balke B. Niobium substitution in Zr0.5Hf0.5NiSn based Heusler compounds for high power factors. Appl Phys Lett. 2011;98(4):042106.CrossRef
[22]
Zurück zum Zitat Shutoh N, Sakurada S. Thermoelectric properties of the Tix(Zr0.5Hf0.5)1−xNiSn half-Heusler compounds. J Alloy Compd. 2005;389(1):204.CrossRef Shutoh N, Sakurada S. Thermoelectric properties of the Tix(Zr0.5Hf0.5)1−xNiSn half-Heusler compounds. J Alloy Compd. 2005;389(1):204.CrossRef
[23]
Zurück zum Zitat Hohl H, Ramirez A, Kaefer W, Fess K, Thurner C, Kloc C, Bucher E. A new class of materials with promising thermoelectric properties: MNiSn (M = Ti, Zr, Hf). MRS Proc. 1997;478:109.CrossRef Hohl H, Ramirez A, Kaefer W, Fess K, Thurner C, Kloc C, Bucher E. A new class of materials with promising thermoelectric properties: MNiSn (M = Ti, Zr, Hf). MRS Proc. 1997;478:109.CrossRef
[24]
Zurück zum Zitat Jeitschko W. Transition metal stannides with MgAgAs and MnCu2Al type structure. Met Trans. 1970;1(11):3159. Jeitschko W. Transition metal stannides with MgAgAs and MnCu2Al type structure. Met Trans. 1970;1(11):3159.
[25]
Zurück zum Zitat Yu C, Xie H, Fu C, Zhu T, Zhao X. High performance half-Heusler thermoelectric materials with refined grains and nanoscale precipitates. J Mater Res. 2012;27(19):2457.CrossRef Yu C, Xie H, Fu C, Zhu T, Zhao X. High performance half-Heusler thermoelectric materials with refined grains and nanoscale precipitates. J Mater Res. 2012;27(19):2457.CrossRef
[26]
Zurück zum Zitat Fritzsche H. Resistivity and hall coefficient of antimony-doped germanium at low temperatures. J Phys Chem Solids. 1958;6(1):69.CrossRef Fritzsche H. Resistivity and hall coefficient of antimony-doped germanium at low temperatures. J Phys Chem Solids. 1958;6(1):69.CrossRef
[27]
Zurück zum Zitat Bergman DJ. Electrical transport properties near a classical conductivity or percolation threshold. Phys A. 1989;157(1):72.CrossRef Bergman DJ. Electrical transport properties near a classical conductivity or percolation threshold. Phys A. 1989;157(1):72.CrossRef
[28]
Zurück zum Zitat Dai U, Palevski A, Deutscher G. Hall effect in a three-dimensional percolation system. Phys Rev B. 1987;36(1):790.CrossRef Dai U, Palevski A, Deutscher G. Hall effect in a three-dimensional percolation system. Phys Rev B. 1987;36(1):790.CrossRef
[29]
Zurück zum Zitat Cook B, Meisner G, Yang J, Uher C. High temperature thermoelectric properties of MNiSn (M = Zr, Hf). In: Proceedings of eighteenth international conference on thermoelectrics, Baltimore, IEEE; 1999, 64. Cook B, Meisner G, Yang J, Uher C. High temperature thermoelectric properties of MNiSn (M = Zr, Hf). In: Proceedings of eighteenth international conference on thermoelectrics, Baltimore, IEEE; 1999, 64.
[30]
Zurück zum Zitat Schmitt J, Gibbs Z, Snyder G, Felser C. Resolving the true band gap of ZrNiSn half-Heusler thermoelectric materials. Mater Horiz. 2015;2(1):68.CrossRef Schmitt J, Gibbs Z, Snyder G, Felser C. Resolving the true band gap of ZrNiSn half-Heusler thermoelectric materials. Mater Horiz. 2015;2(1):68.CrossRef
[31]
Zurück zum Zitat Zou D, Xie S, Liu Y, Lin J, Li J. Electronic structure and thermoelectric properties of half-Heusler Zr0.5Hf0.5NiSn by first-principles calculations. J Appl Phys. 2013;113(19):193705.CrossRef Zou D, Xie S, Liu Y, Lin J, Li J. Electronic structure and thermoelectric properties of half-Heusler Zr0.5Hf0.5NiSn by first-principles calculations. J Appl Phys. 2013;113(19):193705.CrossRef
[32]
Zurück zum Zitat Graf T, Felser C, Parkin S. Simple rules for the understanding of Heusler compounds. Prog Solid State Chem. 2011;39(1):1.CrossRef Graf T, Felser C, Parkin S. Simple rules for the understanding of Heusler compounds. Prog Solid State Chem. 2011;39(1):1.CrossRef
[33]
Zurück zum Zitat Qiu P, Yang J, Huang X, Chen X, Chen L. Effect of antisite defects on band structure and thermoelectric performance of ZrNiSn half-Heusler alloys. Appl Phys Lett. 2010;96(15):152105.CrossRef Qiu P, Yang J, Huang X, Chen X, Chen L. Effect of antisite defects on band structure and thermoelectric performance of ZrNiSn half-Heusler alloys. Appl Phys Lett. 2010;96(15):152105.CrossRef
[34]
Zurück zum Zitat Blakemore J. Semiconductor statistics. New York: Dover Publications, Inc.; 1987. 1. Blakemore J. Semiconductor statistics. New York: Dover Publications, Inc.; 1987. 1.
[35]
Zurück zum Zitat Hazama H, Asahi R, Matsubara M, Takeuchi T. Study of electronic structure and defect formation in Ti1−xNi1+xSn Half-Heusler alloys. J Electro Mater. 2010;39(9):1549.CrossRef Hazama H, Asahi R, Matsubara M, Takeuchi T. Study of electronic structure and defect formation in Ti1−xNi1+xSn Half-Heusler alloys. J Electro Mater. 2010;39(9):1549.CrossRef
[36]
Zurück zum Zitat Aliev F, Brandt N, Moshchalkov V, Kozyrkov V, Skolozdra R, Belogorokhov A. Gap at the Fermi level in the intermetallic vacancy system RBiSn(R = Ti, Zr, Hf). Z Phys B Condens Matter. 1989;75(2):167.CrossRef Aliev F, Brandt N, Moshchalkov V, Kozyrkov V, Skolozdra R, Belogorokhov A. Gap at the Fermi level in the intermetallic vacancy system RBiSn(R = Ti, Zr, Hf). Z Phys B Condens Matter. 1989;75(2):167.CrossRef
[37]
Zurück zum Zitat Arushanov E, Kaefer W, Fess K, Kloc C, Friemelt K, Bucher E. Transport properties of n-ZrNiSn single crystals. Phys Status Solidi A. 2000;177(2):511.CrossRef Arushanov E, Kaefer W, Fess K, Kloc C, Friemelt K, Bucher E. Transport properties of n-ZrNiSn single crystals. Phys Status Solidi A. 2000;177(2):511.CrossRef
[38]
Zurück zum Zitat Conwell E. Impurity band conduction in germanium and silicon. Phys Rev. 1956;103(1):51.CrossRef Conwell E. Impurity band conduction in germanium and silicon. Phys Rev. 1956;103(1):51.CrossRef
[39]
Zurück zum Zitat Hung C. Theory of resistivity and hall effect at very low temperatures. Phys Rev. 1950;79(4):727.CrossRef Hung C. Theory of resistivity and hall effect at very low temperatures. Phys Rev. 1950;79(4):727.CrossRef
[40]
Zurück zum Zitat Putley EH. The Hall effect and related phenomena. London: Butterworth & Co.; 1960. 1. Putley EH. The Hall effect and related phenomena. London: Butterworth & Co.; 1960. 1.
[41]
Zurück zum Zitat Simonson J, Wu D, Xie W, Tritt T, Poon S. Introduction of resonant states and enhancement of thermoelectric properties in half-Heusler alloys. Phys Rev B. 2011;83(23):235211.CrossRef Simonson J, Wu D, Xie W, Tritt T, Poon S. Introduction of resonant states and enhancement of thermoelectric properties in half-Heusler alloys. Phys Rev B. 2011;83(23):235211.CrossRef
[42]
Zurück zum Zitat Xie H, Wang H, Pei Y, Fu C, Liu X, Snyder G, Zhao X, Zhu T. Beneficial contribution of alloy disorder to electron and phonon transport in half-heusler thermoelectric materials. Adv Funct Mater. 2013;23(41):5123.CrossRef Xie H, Wang H, Pei Y, Fu C, Liu X, Snyder G, Zhao X, Zhu T. Beneficial contribution of alloy disorder to electron and phonon transport in half-heusler thermoelectric materials. Adv Funct Mater. 2013;23(41):5123.CrossRef
[43]
Zurück zum Zitat Mott N, Twose W. The theory of impurity conduction. Adv Phys. 1961;10(38):107.CrossRef Mott N, Twose W. The theory of impurity conduction. Adv Phys. 1961;10(38):107.CrossRef
[44]
Zurück zum Zitat Matthiessen A, Vogt C. On the influence of temperature on the electric conducting-power of alloy. Philos Trans R Soc. 1864;154:167.CrossRef Matthiessen A, Vogt C. On the influence of temperature on the electric conducting-power of alloy. Philos Trans R Soc. 1864;154:167.CrossRef
[45]
Zurück zum Zitat Nolas G, Sharp J, Goldsmid H. Thermoelectrics: basic principles and new materials developments. Berlin: Springer; 2001. 1.CrossRef Nolas G, Sharp J, Goldsmid H. Thermoelectrics: basic principles and new materials developments. Berlin: Springer; 2001. 1.CrossRef
[46]
Zurück zum Zitat Conwell E, Weisskopf V. Theory of impurity scattering in semiconductors. Phys Rev. 1950;77(3):388.CrossRef Conwell E, Weisskopf V. Theory of impurity scattering in semiconductors. Phys Rev. 1950;77(3):388.CrossRef
[47]
Zurück zum Zitat Fritzsche H, Lark-Horovitz K. Electrical properties of p-type indium antimonide at low temperatures. Phys Rev. 1955;99(2):400.CrossRef Fritzsche H, Lark-Horovitz K. Electrical properties of p-type indium antimonide at low temperatures. Phys Rev. 1955;99(2):400.CrossRef
[48]
Zurück zum Zitat Ioffe A. Fizika Poluprovodnikov. Moscow: Publishing House of USSR; 1957. 1. Ioffe A. Fizika Poluprovodnikov. Moscow: Publishing House of USSR; 1957. 1.
[49]
Zurück zum Zitat Goldsmid H, Sharp J. Estimation of the thermal band gap of a semiconductor from seebeck measurements. J Electro Mater. 1999;28(7):869.CrossRef Goldsmid H, Sharp J. Estimation of the thermal band gap of a semiconductor from seebeck measurements. J Electro Mater. 1999;28(7):869.CrossRef
[50]
Zurück zum Zitat Tritt T. Thermal conductivity: theory, properties, and applications. New York: Kluwer Academic/Plenum Publishers; 2004. 1.CrossRef Tritt T. Thermal conductivity: theory, properties, and applications. New York: Kluwer Academic/Plenum Publishers; 2004. 1.CrossRef
Metadaten
Titel
Tailoring thermoelectric properties of Zr0.43Hf0.57NiSn half-Heusler compound by defect engineering
verfasst von
Krzysztof Gałązka
Wenjie Xie
Sascha Populoh
Myriam H. Aguirre
Songhak Yoon
Gesine Büttner
Anke Weidenkaff
Publikationsdatum
16.04.2020
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 6/2020
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01392-7

Weitere Artikel der Ausgabe 6/2020

Rare Metals 6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.