Skip to main content
Erschienen in: Rare Metals 6/2020

03.09.2019

Microstructure and mechanical properties of Al–B4C composite at elevated temperature strengthened with in situ Al2O3 network

verfasst von: Shang-Yang Feng, Qiu-Lin Li, Wei Liu, Guo-Gang Shu, Xin Wang

Erschienen in: Rare Metals | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study evaluated the mechanical properties and thermal properties of Al–12 vol%B4C composite at elevated temperature strengthened with in situ Al2O3 network. The composite was fabricated using powder metallurgy (PM) with raw materials of fine atomized aluminum powders, and the associated microstructures were observed. At 350 °C, the composite had ultimate tensile strength of UTS = 137 MPa, yield strength of YS0.2 = 118 MPa, and elongation of ε = 4%. Besides, the mechanical properties of the composite remained unchanged at 350 °C after the long holding periods up to 1000 h. The excellent mechanical properties and thermal stability at 350 °C were secured by in situ am-Al2O3 network that strengthened the grain boundaries. The interfacial de-bonding and brittle cracking of B4C particles were the main fracture mechanisms of the composite. In addition, the influence of sintering temperature and rolling deformation on the microstructures and mechanical properties was studied.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Li JL, Wang XD, Wang SH, Zhang XF, Wang SQ, Xiong YC. Morphology and microstructure of nanocrystalline aluminum-based composite powder reinforced with nanometric B4C particles. Chin J Rare Met. 2016;40(6):521. Li JL, Wang XD, Wang SH, Zhang XF, Wang SQ, Xiong YC. Morphology and microstructure of nanocrystalline aluminum-based composite powder reinforced with nanometric B4C particles. Chin J Rare Met. 2016;40(6):521.
[2]
Zurück zum Zitat Soltani S, Khosroshahi RA, Mousavian RT, Jiang ZY, Boostani AF, Brabazon D. Stir casting process for manufacture of Al–SiC composites. Rare Met. 2017;36(7):581.CrossRef Soltani S, Khosroshahi RA, Mousavian RT, Jiang ZY, Boostani AF, Brabazon D. Stir casting process for manufacture of Al–SiC composites. Rare Met. 2017;36(7):581.CrossRef
[3]
Zurück zum Zitat Wang DS, Wei SH, Fan JZ, Ma ZL, Nie JH. Microstructure and properties of SiCp/Al–Cu–Mg composites with solution treatment. Chin J Rare Met. 2016;40(2):125. Wang DS, Wei SH, Fan JZ, Ma ZL, Nie JH. Microstructure and properties of SiCp/Al–Cu–Mg composites with solution treatment. Chin J Rare Met. 2016;40(2):125.
[5]
Zurück zum Zitat Thévenot F. Boron carbide—a comprehensive review. J Eur Ceram Soc. 1990;6(4):205.CrossRef Thévenot F. Boron carbide—a comprehensive review. J Eur Ceram Soc. 1990;6(4):205.CrossRef
[6]
Zurück zum Zitat Chen XG, Silva MD, Gougeon P, St-Georges L. Microstructure and mechanical properties of friction stir welded AA6063–B4C metal matrix composites. Mater Sci Eng A. 2009;518(1):174.CrossRef Chen XG, Silva MD, Gougeon P, St-Georges L. Microstructure and mechanical properties of friction stir welded AA6063–B4C metal matrix composites. Mater Sci Eng A. 2009;518(1):174.CrossRef
[7]
Zurück zum Zitat Zheng JY, Li QL, Liu W, Shu GG. Microstructure evolution of 15 wt% boron carbide/aluminum composites during liquid-stirring process. J Compos Mater. 2016;50(27):3843.CrossRef Zheng JY, Li QL, Liu W, Shu GG. Microstructure evolution of 15 wt% boron carbide/aluminum composites during liquid-stirring process. J Compos Mater. 2016;50(27):3843.CrossRef
[8]
Zurück zum Zitat Chen HS, Wang WX, Li YL, Nie HH, Wu QC. The design, microstructure and mechanical properties of B4C/6061Al neutron absorber composites fabricated by SPS. Mater Des. 2016;94:360.CrossRef Chen HS, Wang WX, Li YL, Nie HH, Wu QC. The design, microstructure and mechanical properties of B4C/6061Al neutron absorber composites fabricated by SPS. Mater Des. 2016;94:360.CrossRef
[9]
Zurück zum Zitat Lai J, Zhang Z, Chen XG. The thermal stability of mechanical properties of Al–B4C composites alloyed with Sc and Zr at elevated temperatures. Mater Sci Eng A. 2012;5322012:462.CrossRef Lai J, Zhang Z, Chen XG. The thermal stability of mechanical properties of Al–B4C composites alloyed with Sc and Zr at elevated temperatures. Mater Sci Eng A. 2012;5322012:462.CrossRef
[10]
Zurück zum Zitat Machiels A, Lambert R. Handbook of Neutron Absorber Materials for Spent Nuclear Fuel Transportation and Storage Applications. 2009th ed. Palo Alto: EPRI; 2009, 180. Machiels A, Lambert R. Handbook of Neutron Absorber Materials for Spent Nuclear Fuel Transportation and Storage Applications. 2009th ed. Palo Alto: EPRI; 2009, 180.
[11]
Zurück zum Zitat Chen XG, Stgeorges L, Roux M. Mechanical behavior of high boron content Al–B4C metal matrix composites at elevated temperatures. Mater Sci Forum. 2012;706–709:631.CrossRef Chen XG, Stgeorges L, Roux M. Mechanical behavior of high boron content Al–B4C metal matrix composites at elevated temperatures. Mater Sci Forum. 2012;706–709:631.CrossRef
[12]
Zurück zum Zitat Junaedi H, Ibrahim M, Ammar H, Samuel A, Soliman M, Almajid A. Effect of testing temperature on the strength and fracture behavior of Al–B4C composites. J Compos Mater. 2015;50(20):429. Junaedi H, Ibrahim M, Ammar H, Samuel A, Soliman M, Almajid A. Effect of testing temperature on the strength and fracture behavior of Al–B4C composites. J Compos Mater. 2015;50(20):429.
[13]
Zurück zum Zitat Kaufman JG. Properties of aluminum alloys: tensile, creep, and fatigue data at high and low temperatures. ASM Int. 1999;23:668. Kaufman JG. Properties of aluminum alloys: tensile, creep, and fatigue data at high and low temperatures. ASM Int. 1999;23:668.
[14]
Zurück zum Zitat Zhao D, Tuler FR, Lloyd DJ. Fracture at elevated temperatures in a particle reinforced composite. Acta Mater. 1994;42(7):2525.CrossRef Zhao D, Tuler FR, Lloyd DJ. Fracture at elevated temperatures in a particle reinforced composite. Acta Mater. 1994;42(7):2525.CrossRef
[15]
Zurück zum Zitat Nie JF, Muddle BC. On the form of the age-hardening response in high strength aluminium alloys. Mater Sci Eng A. 2001;319–321:448.CrossRef Nie JF, Muddle BC. On the form of the age-hardening response in high strength aluminium alloys. Mater Sci Eng A. 2001;319–321:448.CrossRef
[16]
Zurück zum Zitat Wang G, Guo CX, Pang SJ. Erratum to: thermal stability, mechanical properties and corrosion behavior of a Mg–Cu–Ag–Gd metallic glass with Nb addition. Rare Met. 2017;36(4):304.CrossRef Wang G, Guo CX, Pang SJ. Erratum to: thermal stability, mechanical properties and corrosion behavior of a Mg–Cu–Ag–Gd metallic glass with Nb addition. Rare Met. 2017;36(4):304.CrossRef
[17]
Zurück zum Zitat Liu K, Chen XG. Development of Al–Mn–Mg 3004 alloy for applications at elevated temperature via dispersoid strengthening. Mater Des. 2015;84:340.CrossRef Liu K, Chen XG. Development of Al–Mn–Mg 3004 alloy for applications at elevated temperature via dispersoid strengthening. Mater Des. 2015;84:340.CrossRef
[18]
Zurück zum Zitat Booth-Morrison C, Dunand DC, Seidman DN. Coarsening resistance at 400 °C of precipitation-strengthened Al–Zr–Sc–Er alloys. Acta Mater. 2011;59(18):7029.CrossRef Booth-Morrison C, Dunand DC, Seidman DN. Coarsening resistance at 400 °C of precipitation-strengthened Al–Zr–Sc–Er alloys. Acta Mater. 2011;59(18):7029.CrossRef
[19]
Zurück zum Zitat Zhang XL, Xu XJ, Ling ZY, Wu Y, Sun LS, Fan YZ. Optimization of high-strength Al–Zn–Mg–Cu series aluminum alloy with Zr and Sr additions by heat treatment. Chin J Rare Met. 2016;40(9):117. Zhang XL, Xu XJ, Ling ZY, Wu Y, Sun LS, Fan YZ. Optimization of high-strength Al–Zn–Mg–Cu series aluminum alloy with Zr and Sr additions by heat treatment. Chin J Rare Met. 2016;40(9):117.
[20]
Zurück zum Zitat Poletti C, Balog M, Simancik F, Degischer HP. High-temperature strength of compacted sub-micrometer aluminium powder. Acta Mater. 2010;58:3781.CrossRef Poletti C, Balog M, Simancik F, Degischer HP. High-temperature strength of compacted sub-micrometer aluminium powder. Acta Mater. 2010;58:3781.CrossRef
[21]
Zurück zum Zitat Balog M, Krizik P, Nosko M, Hajovska Z, Riglos MVC, Rajner W. Forged HITEMAL: Al-based MMCs strengthened with nanometric thick Al2O3-skeleton. Mater Sci Eng A. 2014;613(34):82.CrossRef Balog M, Krizik P, Nosko M, Hajovska Z, Riglos MVC, Rajner W. Forged HITEMAL: Al-based MMCs strengthened with nanometric thick Al2O3-skeleton. Mater Sci Eng A. 2014;613(34):82.CrossRef
[22]
Zurück zum Zitat Shin SE, Ko YJ, Bae DH. Mechanical and thermal properties of nanocarbon-reinforced aluminum matrix composites at elevated temperatures. Compos Part B Eng. 2016;106:66.CrossRef Shin SE, Ko YJ, Bae DH. Mechanical and thermal properties of nanocarbon-reinforced aluminum matrix composites at elevated temperatures. Compos Part B Eng. 2016;106:66.CrossRef
[23]
Zurück zum Zitat Ďurišinová K, Ďurišin J, Orolínová M, Ďurišin M. Effect of particle additions on microstructure evolution of aluminum matrix composite. J Alloy Compd. 2012;525(10):137.CrossRef Ďurišinová K, Ďurišin J, Orolínová M, Ďurišin M. Effect of particle additions on microstructure evolution of aluminum matrix composite. J Alloy Compd. 2012;525(10):137.CrossRef
[24]
Zurück zum Zitat Balog M, Simancik F, Krizik P, Nosko M, Rajner W, Walcher M, Qian M. Novel ultrafine-grained aluminum metal matrix composites prepared from fine atomized aluminum powders, In: Light Metals 2014: Proceedings of the Symposia Sponsored by the TMS Aluminum Committee at the TMS 2014 annual meeting & exhibition. New Jersey: Wiley, 2014, 1425. Balog M, Simancik F, Krizik P, Nosko M, Rajner W, Walcher M, Qian M. Novel ultrafine-grained aluminum metal matrix composites prepared from fine atomized aluminum powders, In: Light Metals 2014: Proceedings of the Symposia Sponsored by the TMS Aluminum Committee at the TMS 2014 annual meeting & exhibition. New Jersey: Wiley, 2014, 1425.
[25]
Zurück zum Zitat Balog M, Hu T, Krizik P, Victoria M, Riglos C, Saller BD. On the thermal stability of ultrafine-grained al stabilized by in situ amorphous Al2O3 network. Mater Sci Eng A. 2015;648:61.CrossRef Balog M, Hu T, Krizik P, Victoria M, Riglos C, Saller BD. On the thermal stability of ultrafine-grained al stabilized by in situ amorphous Al2O3 network. Mater Sci Eng A. 2015;648:61.CrossRef
[26]
Zurück zum Zitat Balog M, Poletti C, Simancik F, Walcher M, Rajner W. The effect of native Al2O3 skin disruption on properties of fine al powder compacts. J Alloy Compd. 2011;509(12):S235.CrossRef Balog M, Poletti C, Simancik F, Walcher M, Rajner W. The effect of native Al2O3 skin disruption on properties of fine al powder compacts. J Alloy Compd. 2011;509(12):S235.CrossRef
[27]
Zurück zum Zitat Le GM, Godfrey A, Hansen N. Structure and strength of aluminum with sub-micrometer/micrometer grain size prepared by spark plasma sintering. Mater Des. 2013;49:360.CrossRef Le GM, Godfrey A, Hansen N. Structure and strength of aluminum with sub-micrometer/micrometer grain size prepared by spark plasma sintering. Mater Des. 2013;49:360.CrossRef
[28]
Zurück zum Zitat Llorca J, Martin A, Ruiz J, Elices M. Particulate fracture during deformation. Metall Trans A. 1993;24(7):1575.CrossRef Llorca J, Martin A, Ruiz J, Elices M. Particulate fracture during deformation. Metall Trans A. 1993;24(7):1575.CrossRef
[29]
Zurück zum Zitat Lewandowski JJ, Liu C Jr, Hunt WH. Effects of matrix microstructure and particle distribution on fracture of an aluminum metal matrix composite. Mater Sci Eng A. 1989;107(1):241.CrossRef Lewandowski JJ, Liu C Jr, Hunt WH. Effects of matrix microstructure and particle distribution on fracture of an aluminum metal matrix composite. Mater Sci Eng A. 1989;107(1):241.CrossRef
[30]
Zurück zum Zitat Mummery P, Derby B. The influence of microstructure on the fracture behaviour of particulate metal matrix composites. Mater Sci Eng A. 1991;135(121):221.CrossRef Mummery P, Derby B. The influence of microstructure on the fracture behaviour of particulate metal matrix composites. Mater Sci Eng A. 1991;135(121):221.CrossRef
Metadaten
Titel
Microstructure and mechanical properties of Al–B4C composite at elevated temperature strengthened with in situ Al2O3 network
verfasst von
Shang-Yang Feng
Qiu-Lin Li
Wei Liu
Guo-Gang Shu
Xin Wang
Publikationsdatum
03.09.2019
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 6/2020
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-019-01279-2

Weitere Artikel der Ausgabe 6/2020

Rare Metals 6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.