Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 6/2020

09-06-2020

Surface Mo-Enrichment and Plasma Carburizing on Sintered Iron: Microstructure and Tribological Properties

Authors: T. Bendo, M. L. Hermann, D. B. Salvaro, C. Binder, G. Hammes, J. D. B. de Mello, A. N. Klein

Published in: Journal of Materials Engineering and Performance | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this investigation, the effect of plasma treatments (molybdenum surface enrichment + plasma carburizing) on microstructural and mechanical properties of sintered iron was investigated. The plasma surface enrichment was performed using a molybdenum cathode. Subsequently, the specimens were plasma carburized. To assess the tribological behavior, reciprocating dry sliding wear tests was performed using a ball-on-flat configuration. There was little variation in the surface morphology of the plasma-carburized sintered iron when compared to the plain sintered iron, whereas for Mo-enriched specimens, in particular FeMoC, large β-Mo2C and ξ-Fe2MoC particles were identified. The surface topography was modified accordingly. Indeed, average quadratic roughness varied order of magnitude, and the skewness moved to the positive value (Ssk > 0; predominance of picks) for the FeMoC samples. There was a close correlation between the specimen’s wear rate and subsurface hardness. In fact, the harder samples (FeMoC) that presented surface hardness about 4 times greater than the softer ones (Fe) also showed a reduction in the wear rate around 4 times as well as inducing more considerable wear of the counterbodies. The friction, in turn, was little affected by the presence of surface layers, presenting slightly lower values for the cemented layers. The tribolayers developed in all tested samples were characterized as transformed structures consisting of repeatedly deformed, comminuted, oxidized, agglomerated, and compacted wear particles. The subsurface hardness was the determining property to obtain the lowest wear rate, regardless of the initial roughness of the surface.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R.M. German, Sintering: Theory and Pratice, Wiley, New York, 1996, p 550 R.M. German, Sintering: Theory and Pratice, Wiley, New York, 1996, p 550
2.
go back to reference G.H. Gessinger, Powder Metallurgy of Superalloys, Great Britain at the University Press, Cambridge, 1984, p 348 G.H. Gessinger, Powder Metallurgy of Superalloys, Great Britain at the University Press, Cambridge, 1984, p 348
4.
go back to reference M. Tsujikawa, S. Noguchi, N. Yamauchi, N. Ueda, A. Okamoto, T. Sone, and K. Nakata, Acceleration of Carbon Diffusion by Molybdenum in Low-Temperature Plasma Carburizing of Austenitic Stainless Steel, Plasma Process. Polym., 2007, 4, p 752–756CrossRef M. Tsujikawa, S. Noguchi, N. Yamauchi, N. Ueda, A. Okamoto, T. Sone, and K. Nakata, Acceleration of Carbon Diffusion by Molybdenum in Low-Temperature Plasma Carburizing of Austenitic Stainless Steel, Plasma Process. Polym., 2007, 4, p 752–756CrossRef
5.
go back to reference F. Çavuslu and M. Usta, Kinetics and Mechanical Study of Plasma Electrolytic Carburizing for Pure Iron, Appl. Surf. Sci., 2011, 257, p 4014–4020CrossRef F. Çavuslu and M. Usta, Kinetics and Mechanical Study of Plasma Electrolytic Carburizing for Pure Iron, Appl. Surf. Sci., 2011, 257, p 4014–4020CrossRef
6.
go back to reference D.H. Jack and K.H. Jack, Carbides and Nitrides in Steel, Mater. Sci. Eng., 1973, 11, p 1–27CrossRef D.H. Jack and K.H. Jack, Carbides and Nitrides in Steel, Mater. Sci. Eng., 1973, 11, p 1–27CrossRef
7.
go back to reference T. Bendo, A.M. Maliska, J.J.S. Acuña, C. Binder, K.B. Demetrio, and A.N. Klein, Nitriding of Surface Mo-Enriched Sintered Iron: Structure and Morphology of Compound Layer, Surf. Coat. Technol., 2014, 258, p 368–373CrossRef T. Bendo, A.M. Maliska, J.J.S. Acuña, C. Binder, K.B. Demetrio, and A.N. Klein, Nitriding of Surface Mo-Enriched Sintered Iron: Structure and Morphology of Compound Layer, Surf. Coat. Technol., 2014, 258, p 368–373CrossRef
8.
go back to reference T. Bendo, A.M. Maliska, J.J.S. Acuña, C. Binder, G. Hammes, D.R. Consoni, and A.N. Klein, The Effect of Mo on the Characteristics of a Plasma Nitrided Layer of Sintered Iron, Appl. Surf. Sci., 2016, 363, p 29–36CrossRef T. Bendo, A.M. Maliska, J.J.S. Acuña, C. Binder, G. Hammes, D.R. Consoni, and A.N. Klein, The Effect of Mo on the Characteristics of a Plasma Nitrided Layer of Sintered Iron, Appl. Surf. Sci., 2016, 363, p 29–36CrossRef
10.
go back to reference R.O. Giacomelli, D.B. Salvaro, T. Bendo, C. Binder, A.N. Klein, and J.D.B. de Mello, Topography Evolution and Friction Coefficient of Gray and Nodular Cast Irons with Duplex Plasma Nitrided + DLC Coating, Surf. Coat. Technol., 2017, 314, p 18–27CrossRef R.O. Giacomelli, D.B. Salvaro, T. Bendo, C. Binder, A.N. Klein, and J.D.B. de Mello, Topography Evolution and Friction Coefficient of Gray and Nodular Cast Irons with Duplex Plasma Nitrided + DLC Coating, Surf. Coat. Technol., 2017, 314, p 18–27CrossRef
11.
go back to reference M. Naeem, M. Shafiq, M. Zaka-ul-Islam, A. Ashiq, J.C. Díaz-Guillén, M. Shahzad, and M. Zakaullah, Enhanced Surface Properties of Plain Carbon Steel Using Plasma Nitriding with Austenitic Steel Cathodic Cage, Mater. Des., 2016, 108, p 745–753CrossRef M. Naeem, M. Shafiq, M. Zaka-ul-Islam, A. Ashiq, J.C. Díaz-Guillén, M. Shahzad, and M. Zakaullah, Enhanced Surface Properties of Plain Carbon Steel Using Plasma Nitriding with Austenitic Steel Cathodic Cage, Mater. Des., 2016, 108, p 745–753CrossRef
12.
go back to reference Ö. Bayrak, H. Kovaci, F. Yildiz, A.F. Yetim, and A. Çelik, Dry Sliding Wear Characteristics of plasma-nitrocarburized Co-Cr-Mo Alloy, Met. Sci. Heat Treat., 2017, 58, p 742–747CrossRef Ö. Bayrak, H. Kovaci, F. Yildiz, A.F. Yetim, and A. Çelik, Dry Sliding Wear Characteristics of plasma-nitrocarburized Co-Cr-Mo Alloy, Met. Sci. Heat Treat., 2017, 58, p 742–747CrossRef
13.
go back to reference W. Zhang, G. Ji, B. Aiming, and B. Zhang, Corrosion and Tribological Behavior of ZrO2 Films Prepared on Stainless Steel Surface by the Sol–Gel Method, ACS Appl. Mater. Interfaces, 2015, 7, p 28264–28272CrossRef W. Zhang, G. Ji, B. Aiming, and B. Zhang, Corrosion and Tribological Behavior of ZrO2 Films Prepared on Stainless Steel Surface by the Sol–Gel Method, ACS Appl. Mater. Interfaces, 2015, 7, p 28264–28272CrossRef
14.
go back to reference H.C. Pavanati, J.M. Lourenço, A.M. Maliska, A.N. Klein, and J.L.R. Muzart, Ferrite Stabilization Induced by Molybdenum Enrichment in the Surface of Unalloyed Iron Sintered in an Abnormal Glow Discharge, Appl. Surf. Sci., 2007, 253, p 9105–9111CrossRef H.C. Pavanati, J.M. Lourenço, A.M. Maliska, A.N. Klein, and J.L.R. Muzart, Ferrite Stabilization Induced by Molybdenum Enrichment in the Surface of Unalloyed Iron Sintered in an Abnormal Glow Discharge, Appl. Surf. Sci., 2007, 253, p 9105–9111CrossRef
15.
go back to reference H.C. Pavanati, A.M. Maliska, A.N. Klein, and J.L.R. Muzart, Sintering Unalloyed Iron in Abnormal Glow Discharge with Superficial Chromium Enrichment, Mater. Sci. Eng. A, 2005, 392, p 313–319CrossRef H.C. Pavanati, A.M. Maliska, A.N. Klein, and J.L.R. Muzart, Sintering Unalloyed Iron in Abnormal Glow Discharge with Superficial Chromium Enrichment, Mater. Sci. Eng. A, 2005, 392, p 313–319CrossRef
16.
go back to reference R. Marchiori, A.M. Maliska, P.C. Borges, A.N. Klein, and J.L.R. Muzart, Corrosion Study of Plasma Sintered Unalloyed Iron: The Influence of Porosity Sealing and Ni Surface Enrichment, Mater. Sci. Eng. A, 2007, 467, p 159–164CrossRef R. Marchiori, A.M. Maliska, P.C. Borges, A.N. Klein, and J.L.R. Muzart, Corrosion Study of Plasma Sintered Unalloyed Iron: The Influence of Porosity Sealing and Ni Surface Enrichment, Mater. Sci. Eng. A, 2007, 467, p 159–164CrossRef
17.
go back to reference A.N. Klein, R.P. Cardoso, H.C. Pavanati, C. Binder, A.M. Maliska, G. Hammes, D. Fusão, A. Seeber, S.F. Brunatto, and J.R.L. Muzart, DC Plasma Technology Applied to Poder Metallurgy: An Overview, Plasma Sci. Technol., 2013, 15, p 70–81CrossRef A.N. Klein, R.P. Cardoso, H.C. Pavanati, C. Binder, A.M. Maliska, G. Hammes, D. Fusão, A. Seeber, S.F. Brunatto, and J.R.L. Muzart, DC Plasma Technology Applied to Poder Metallurgy: An Overview, Plasma Sci. Technol., 2013, 15, p 70–81CrossRef
18.
go back to reference I. Hacisalihoglu, F. Yildiz, and A. Alsaran, Wear Performance of Different Nitride-Based Coatings on Plasma Nitrided AISI, M2 Tool Steel in Dry and Lubricated Conditions, Wear, 2017, 384–385, p 159–168CrossRef I. Hacisalihoglu, F. Yildiz, and A. Alsaran, Wear Performance of Different Nitride-Based Coatings on Plasma Nitrided AISI, M2 Tool Steel in Dry and Lubricated Conditions, Wear, 2017, 384–385, p 159–168CrossRef
19.
go back to reference S.R. Meka and E.J. Mittemeijer, Abnormal Nitride Morphologies Upon Nitriding Iron-Based Substrates, JOM, 2013, 65, p 769–775CrossRef S.R. Meka and E.J. Mittemeijer, Abnormal Nitride Morphologies Upon Nitriding Iron-Based Substrates, JOM, 2013, 65, p 769–775CrossRef
20.
go back to reference W.M. Seidl, M. Bartosik, S. Kolozsvári, H. Bolvardi, and P.H. Mayrhofer, Mechanical Properties and Oxidation Resistance of Al-Cr-N/Ti-Al-Ta-N Multilayer Coatings, Surf. Coat. Technol., 2018, 347, p 427–433CrossRef W.M. Seidl, M. Bartosik, S. Kolozsvári, H. Bolvardi, and P.H. Mayrhofer, Mechanical Properties and Oxidation Resistance of Al-Cr-N/Ti-Al-Ta-N Multilayer Coatings, Surf. Coat. Technol., 2018, 347, p 427–433CrossRef
21.
go back to reference S. Hogmark, S. Jacobson, and M. Larsson, Design and Evaluation of Tribological Coatings, Wear, 2000, 246, p 20–33CrossRef S. Hogmark, S. Jacobson, and M. Larsson, Design and Evaluation of Tribological Coatings, Wear, 2000, 246, p 20–33CrossRef
22.
go back to reference S.J. Bull and A.M. Jones, Multilayer Coatings for Improved Performance, Surf. Coat. Technol., 1996, 78, p 173–184CrossRef S.J. Bull and A.M. Jones, Multilayer Coatings for Improved Performance, Surf. Coat. Technol., 1996, 78, p 173–184CrossRef
24.
go back to reference Y. Ye, Y. Yao, H. Chen, S. Guo, J. Li, and L. Wang, Structure, Mechanical and Tribological Properties in Seawater of Multilayer TiSiN/Ni Coatings Prepared by Cathodic Arc Method, Appl. Surf. Sci., 2019, 493, p 1177–1186CrossRef Y. Ye, Y. Yao, H. Chen, S. Guo, J. Li, and L. Wang, Structure, Mechanical and Tribological Properties in Seawater of Multilayer TiSiN/Ni Coatings Prepared by Cathodic Arc Method, Appl. Surf. Sci., 2019, 493, p 1177–1186CrossRef
25.
go back to reference JCPDS—International Center for Diffraction Data, PCPDFWIN, Version PDF-22004 JCPDS—International Center for Diffraction Data, PCPDFWIN, Version PDF-22004
26.
go back to reference ICSD-Web—Inorganic Crystal Structure Database, FIZ Karlsruhe, Version 2.2.22013 ICSD-Web—Inorganic Crystal Structure Database, FIZ Karlsruhe, Version 2.2.22013
27.
go back to reference H. Wada, Thermodynamics of the Fe-Mo-C System at 985 K, Met. Trans. A, 1986, 17A, p 391–398CrossRef H. Wada, Thermodynamics of the Fe-Mo-C System at 985 K, Met. Trans. A, 1986, 17A, p 391–398CrossRef
28.
go back to reference J.A. Lobo and G.H. Geiger, Thermodynamics and Solubility of Carbon in Ferrite and Ferritic Fe-Mo Alloys, Met. Trans. A, 1976, 7A, p 1347–1357CrossRef J.A. Lobo and G.H. Geiger, Thermodynamics and Solubility of Carbon in Ferrite and Ferritic Fe-Mo Alloys, Met. Trans. A, 1976, 7A, p 1347–1357CrossRef
29.
go back to reference H. Ipser, J.C. Schusterz, and H. Nowotny, The Iron-Rich Corner of the Ternary System Fe-Mo-C, Thermochim. Acta, 1990, 160, p 93–96CrossRef H. Ipser, J.C. Schusterz, and H. Nowotny, The Iron-Rich Corner of the Ternary System Fe-Mo-C, Thermochim. Acta, 1990, 160, p 93–96CrossRef
30.
go back to reference T. Wada, H. Wada, J.F. Elliott, and J. Chipman, Activity of Carbon and Solubility of Carbides in the FCC Fe-Mo-C, Fe-Cr-C, and Fe-V-C Alloys, Met. Trans. A, 1972, 3, p 2865–2872 T. Wada, H. Wada, J.F. Elliott, and J. Chipman, Activity of Carbon and Solubility of Carbides in the FCC Fe-Mo-C, Fe-Cr-C, and Fe-V-C Alloys, Met. Trans. A, 1972, 3, p 2865–2872
31.
go back to reference H. Bhadeshia and R. Honeycombe, Steels: Microstructure and Properties, 3rd ed., Butterworth-Heinemann, Oxford, 2006, p 357 H. Bhadeshia and R. Honeycombe, Steels: Microstructure and Properties, 3rd ed., Butterworth-Heinemann, Oxford, 2006, p 357
32.
go back to reference S.S. Babu and H.K.D.H. Bhadeshia, Diffusion of Carbon in Substitutionally Alloyed Austenite, J. Mater. Sci. Lett., 1995, 14, p 314–316CrossRef S.S. Babu and H.K.D.H. Bhadeshia, Diffusion of Carbon in Substitutionally Alloyed Austenite, J. Mater. Sci. Lett., 1995, 14, p 314–316CrossRef
33.
go back to reference J. Gegner, A.A. Vasilyev, P.J. Wilbrandt, M. Kaffenberger, Alloy Dependence of the Diffusion Coefficient of Carbon in Austenite and Analysis of Carburization Profiles in Case Hardening of Steels, in Proceedings 7th International Conference on Material Technologies and Modeling, Ariel University Center of Samaria, Israel, 2012, p 259–283 J. Gegner, A.A. Vasilyev, P.J. Wilbrandt, M. Kaffenberger, Alloy Dependence of the Diffusion Coefficient of Carbon in Austenite and Analysis of Carburization Profiles in Case Hardening of Steels, in Proceedings 7th International Conference on Material Technologies and Modeling, Ariel University Center of Samaria, Israel, 2012, p 259–283
34.
go back to reference L. Blunt and X. Jiang, Advanced Techniques for Assessment Surface Topography, 1st ed., Butterworth-Heinemann, Oxford, 2003, p 340 L. Blunt and X. Jiang, Advanced Techniques for Assessment Surface Topography, 1st ed., Butterworth-Heinemann, Oxford, 2003, p 340
35.
go back to reference A. Ghosh and F. Sadeghi, A Novel Approach to Model Effects of Surface Roughness Parameters on Wear, Wear, 2015, 338–339, p 73–94CrossRef A. Ghosh and F. Sadeghi, A Novel Approach to Model Effects of Surface Roughness Parameters on Wear, Wear, 2015, 338–339, p 73–94CrossRef
36.
go back to reference F.H. Stott and G.C. Wood, The Influence of Oxides on the Friction and Wear of Alloys, Tribol. Int., 1978, 11, p 211–218CrossRef F.H. Stott and G.C. Wood, The Influence of Oxides on the Friction and Wear of Alloys, Tribol. Int., 1978, 11, p 211–218CrossRef
37.
go back to reference F.E. Kennedy, Y. Lu, I. Baker, and P.R. Munroe, The Influence of Sliding Velocity and Third Bodies on the Dry Sliding Wear of Fe30Ni20Mn25Al25 Against AISI, 347 Stainless Steel, Wear, 2017, 374–375, p 63–76CrossRef F.E. Kennedy, Y. Lu, I. Baker, and P.R. Munroe, The Influence of Sliding Velocity and Third Bodies on the Dry Sliding Wear of Fe30Ni20Mn25Al25 Against AISI, 347 Stainless Steel, Wear, 2017, 374–375, p 63–76CrossRef
38.
go back to reference J. Jiang, F.H. Stott, and M.M. Stack, A Mathematical Model for Sliding Wear of Metals at Elevated Temperatures, Wear, 1995, 181–183, p 20–31CrossRef J. Jiang, F.H. Stott, and M.M. Stack, A Mathematical Model for Sliding Wear of Metals at Elevated Temperatures, Wear, 1995, 181–183, p 20–31CrossRef
39.
go back to reference X. Hu, S. Sundararajan, and A. Martini, The Effects of Adhesive Strength and Load on Material Transfer in Nanoscale Wear, Comput. Mater. Sci., 2014, 95, p 464–469CrossRef X. Hu, S. Sundararajan, and A. Martini, The Effects of Adhesive Strength and Load on Material Transfer in Nanoscale Wear, Comput. Mater. Sci., 2014, 95, p 464–469CrossRef
41.
go back to reference L.H. Chen and D.A. Rigney, Adhesion Theories of Transfer and Wear during Sliding of Metals, Wear, 1990, 136–2, p 223–235CrossRef L.H. Chen and D.A. Rigney, Adhesion Theories of Transfer and Wear during Sliding of Metals, Wear, 1990, 136–2, p 223–235CrossRef
43.
go back to reference F.H. Stott and M.P. Jordan, The Effects of Load and Substrate Hardness on the Development and Maintenance of Wear-Protective Layers during Sliding at Elevated Temperatures, Wear, 2001, 250, p 391–400CrossRef F.H. Stott and M.P. Jordan, The Effects of Load and Substrate Hardness on the Development and Maintenance of Wear-Protective Layers during Sliding at Elevated Temperatures, Wear, 2001, 250, p 391–400CrossRef
44.
go back to reference J.C.G. Milan, M.A. Carvalho, P.R. Xavier, S.D. Franco, and J.D.B. De Mello, Effect of Temperature, Normal Load and Pre-oxidation on the Sliding Wear of Multicomponent Ferrous Alloys, Wear, 2005, 259, p 412–423CrossRef J.C.G. Milan, M.A. Carvalho, P.R. Xavier, S.D. Franco, and J.D.B. De Mello, Effect of Temperature, Normal Load and Pre-oxidation on the Sliding Wear of Multicomponent Ferrous Alloys, Wear, 2005, 259, p 412–423CrossRef
45.
go back to reference C.H. Hager, Jr., J.H. Sanders, and S. Sharma, Unlubricated Gross Slip Fretting Wear of Metallic Plasma-Sprayed Coatings for Ti6Al4V Surfaces, Wear, 2008, 265, p 439–451CrossRef C.H. Hager, Jr., J.H. Sanders, and S. Sharma, Unlubricated Gross Slip Fretting Wear of Metallic Plasma-Sprayed Coatings for Ti6Al4V Surfaces, Wear, 2008, 265, p 439–451CrossRef
Metadata
Title
Surface Mo-Enrichment and Plasma Carburizing on Sintered Iron: Microstructure and Tribological Properties
Authors
T. Bendo
M. L. Hermann
D. B. Salvaro
C. Binder
G. Hammes
J. D. B. de Mello
A. N. Klein
Publication date
09-06-2020
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 6/2020
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04870-2

Other articles of this Issue 6/2020

Journal of Materials Engineering and Performance 6/2020 Go to the issue

Premium Partners