Skip to main content
Top
Published in: Neural Computing and Applications 2/2012

01-03-2012 | Swam Intelligence

Swarm-intelligent foraging in honeybees: benefits and costs of task-partitioning and environmental fluctuations

Authors: Thomas Schmickl, Ronald Thenius, Karl Crailsheim

Published in: Neural Computing and Applications | Issue 2/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

For honeybee colonies, it is crucial to collect nectar in an efficient way. Empiric experiments showed that the process of decision making, which allows the colony to select the optimal nectar source, is based on individual decisions. These decisions are made by returning nectar foragers, which alter their dancing behaviours based on the nectar source’s quality and based on the experienced search time for a receiver bee. Nectar receivers, which represent a shared limited resource for foragers, can modulate the foraging decisions performed by the colony. We investigated the interplay between foragers and receivers by using a multi-agent simulation. Therefore, we implemented agents which are capable of a limited set of behaviours and which spend energy according to their behaviour. In simulation experiments, we tested colonies with various receiver-to-forager ratios and measured colony-level results like the emerging foraging patterns and the colony’s net honey gain. We show that the number of receivers prominently regulates the foraging workforce. All tested environmental fluctuations are predicted to cause energetic costs for the colony. Task-partitioning additionally influences the colony’s decision-making concerning the question whether or not the colony sticks to a nectar source after environmental fluctuations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sumpter DJT, Pratt SC (2003) A modeling framework for understanding social insect foraging. Behav Ecol Sociobiol (53):131–144 Sumpter DJT, Pratt SC (2003) A modeling framework for understanding social insect foraging. Behav Ecol Sociobiol (53):131–144
2.
go back to reference Bartholdi JJ, Seeley TD, Tovey C, Vate JV (1992) The pattern and effectiveness of forager allocation among flower patches in honey bee colonies. J Theor Biol 160:23–40CrossRef Bartholdi JJ, Seeley TD, Tovey C, Vate JV (1992) The pattern and effectiveness of forager allocation among flower patches in honey bee colonies. J Theor Biol 160:23–40CrossRef
3.
go back to reference Seeley TD, Camazine S, Sneyd J (1991) Collective decision-making in honey bees: how colonies choose among nectar sources. Behav Ecol Sociobiol 28(4):277–290CrossRef Seeley TD, Camazine S, Sneyd J (1991) Collective decision-making in honey bees: how colonies choose among nectar sources. Behav Ecol Sociobiol 28(4):277–290CrossRef
4.
go back to reference Cox MD, Myerscough MR (2003) A flexible model of foraging by a honey bee colony: the effects of individual behaviour on foraging success. J Theor Biol 223:179–197 Cox MD, Myerscough MR (2003) A flexible model of foraging by a honey bee colony: the effects of individual behaviour on foraging success. J Theor Biol 223:179–197
5.
go back to reference de Vries H, Biesmeijer JC (2002) Self-organization in collective honeybee foraging: emergence of symmetry breaking, cross inhibition and equal harvest-rate distribution. Behav Ecol Sociobiol 51(6):557–569CrossRef de Vries H, Biesmeijer JC (2002) Self-organization in collective honeybee foraging: emergence of symmetry breaking, cross inhibition and equal harvest-rate distribution. Behav Ecol Sociobiol 51(6):557–569CrossRef
6.
go back to reference de Vries H, Biesmeijer JC (1998) Modelling collective foraging by means of individual behaviour rules in honey-bees. Behav Ecol Sociobiol 44:109–124CrossRef de Vries H, Biesmeijer JC (1998) Modelling collective foraging by means of individual behaviour rules in honey-bees. Behav Ecol Sociobiol 44:109–124CrossRef
7.
go back to reference Anderson C, Ratnieks FLW (1999) Task partitioning in insect societies. I. Effect of colony size on queueing delay and colony ergonomic efficiency. Am Nat 154:521–535CrossRef Anderson C, Ratnieks FLW (1999) Task partitioning in insect societies. I. Effect of colony size on queueing delay and colony ergonomic efficiency. Am Nat 154:521–535CrossRef
8.
go back to reference Ratnieks FLW, Anderson C (1999) Task partitioning in insect societies II: use of queueing delay information in recruitment. Am Nat 154(5): 536–548CrossRef Ratnieks FLW, Anderson C (1999) Task partitioning in insect societies II: use of queueing delay information in recruitment. Am Nat 154(5): 536–548CrossRef
9.
go back to reference von Frisch K (1965) Tanzsprache und Orientierung der Bienen. Springer, Berlin von Frisch K (1965) Tanzsprache und Orientierung der Bienen. Springer, Berlin
10.
go back to reference Seeley TD (1992) The tremble dance of the honey bee: message and meanings. Behav Ecol Sociobiol 31:375–383CrossRef Seeley TD (1992) The tremble dance of the honey bee: message and meanings. Behav Ecol Sociobiol 31:375–383CrossRef
11.
go back to reference Seeley TD, Camazine S, Sneyd J (1991) Collective decision-making in honey bees: how colonies choose among nectar sources. Behav Ecol Sociobiol 28(4):277–290CrossRef Seeley TD, Camazine S, Sneyd J (1991) Collective decision-making in honey bees: how colonies choose among nectar sources. Behav Ecol Sociobiol 28(4):277–290CrossRef
12.
go back to reference Grüter C, Farina WM (2009) The honeybee waggle dance: can we follow the steps? Trends Ecol Evol 24(5):242–247CrossRef Grüter C, Farina WM (2009) The honeybee waggle dance: can we follow the steps? Trends Ecol Evol 24(5):242–247CrossRef
13.
go back to reference Seeley TD (1994) Honey bee foragers as sensory units of their colonies. Behav Ecol Sociobiol 34:51–62CrossRef Seeley TD (1994) Honey bee foragers as sensory units of their colonies. Behav Ecol Sociobiol 34:51–62CrossRef
14.
go back to reference Schmid-Hempel P, Kacelnik A, Houston AI (1985) Honeybees maximize efficiency by not filling their crop. Behav Ecol Sociobiol 17:61–66CrossRef Schmid-Hempel P, Kacelnik A, Houston AI (1985) Honeybees maximize efficiency by not filling their crop. Behav Ecol Sociobiol 17:61–66CrossRef
15.
go back to reference Johnson BR (2003) Organization of work in the honeybee: a compromise between division of labour and behavioural flexibility. Proc Royal Soc Lond B 270(1511):147–152CrossRef Johnson BR (2003) Organization of work in the honeybee: a compromise between division of labour and behavioural flexibility. Proc Royal Soc Lond B 270(1511):147–152CrossRef
16.
go back to reference Seeley TD (1982) Adaptive significance of the age polyethism schedule in honeybee colonies. Behav Ecol Sociobiol 11:287–293CrossRef Seeley TD (1982) Adaptive significance of the age polyethism schedule in honeybee colonies. Behav Ecol Sociobiol 11:287–293CrossRef
17.
go back to reference Johnson BR (2002) Reallocation of labor in honeybee colonies during heat stress: the relative roles of task switching and the activation of reserve labor. Behav Ecol Sociobiol 51:188–196CrossRef Johnson BR (2002) Reallocation of labor in honeybee colonies during heat stress: the relative roles of task switching and the activation of reserve labor. Behav Ecol Sociobiol 51:188–196CrossRef
18.
go back to reference Schmickl T, Crailsheim K Hopomo (2007) A model of honeybee intracolonial population dynamics and resource management. Ecol Model 204(1–2): 219–245CrossRef Schmickl T, Crailsheim K Hopomo (2007) A model of honeybee intracolonial population dynamics and resource management. Ecol Model 204(1–2): 219–245CrossRef
19.
go back to reference Schmickl T, Crailsheim K (2001) Cannibalism and early capping: strategy of honeybee colonies in times of experimental pollen shortages. J Comp Physiol A 187(7):541–547CrossRef Schmickl T, Crailsheim K (2001) Cannibalism and early capping: strategy of honeybee colonies in times of experimental pollen shortages. J Comp Physiol A 187(7):541–547CrossRef
20.
go back to reference Seeley TD (1992) The tremble dance of the honey bee: message and meanings. Behav Ecol Sociobiol 31:375–383CrossRef Seeley TD (1992) The tremble dance of the honey bee: message and meanings. Behav Ecol Sociobiol 31:375–383CrossRef
21.
go back to reference Seeley TD (1989) Social foraging in honey bees: how nectar foragers assess their colonys nutritional status. Behav Ecol and Sociobiol 24:181–199CrossRef Seeley TD (1989) Social foraging in honey bees: how nectar foragers assess their colonys nutritional status. Behav Ecol and Sociobiol 24:181–199CrossRef
22.
go back to reference Schmickl T, Thenius R, Crailsheim K (2005) Simulating swarm intelligence in honeybees: foraging in differently fluctuating environments. In: Proceedings of the genetic and evolutionary computation conference (GECCO) 2005, Washington, DC, pp 273–274 Schmickl T, Thenius R, Crailsheim K (2005) Simulating swarm intelligence in honeybees: foraging in differently fluctuating environments. In: Proceedings of the genetic and evolutionary computation conference (GECCO) 2005, Washington, DC, pp 273–274
23.
go back to reference Schmickl T, Crailsheim K (2004) Costs of environmental fluctuations and benefits of dynamic decentralized foraging decisions in honey bees. Adapt Behav Anim Anim Software Agents Rob Adapt Syst 12:263–277 Schmickl T, Crailsheim K (2004) Costs of environmental fluctuations and benefits of dynamic decentralized foraging decisions in honey bees. Adapt Behav Anim Anim Software Agents Rob Adapt Syst 12:263–277
24.
go back to reference Thenius R, Schmickl T, Crailsheim K (2006) Economic optimisation in honeybees: adaptive behaviour of a superorganism. In: Nolfi S, Baldassarre G, Calabretta R, Hallam JCT, Marocco D, Meyer JA, Miglino O, Parisi D (eds) From animals to animats 9: 9th international conference on simulation of adaptive behavior, SAB 2006. Volume 4095 of Lecture Notes in Artificial Intelligence (LNAI). Springer, Berlin, pp 725–737 Thenius R, Schmickl T, Crailsheim K (2006) Economic optimisation in honeybees: adaptive behaviour of a superorganism. In: Nolfi S, Baldassarre G, Calabretta R, Hallam JCT, Marocco D, Meyer JA, Miglino O, Parisi D (eds) From animals to animats 9: 9th international conference on simulation of adaptive behavior, SAB 2006. Volume 4095 of Lecture Notes in Artificial Intelligence (LNAI). Springer, Berlin, pp 725–737
25.
go back to reference Russell SJ, Norvig P (1995) Artificial intelligence: a modern approach. Prentice Hall, Englewood CliffsMATH Russell SJ, Norvig P (1995) Artificial intelligence: a modern approach. Prentice Hall, Englewood CliffsMATH
26.
go back to reference Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, OxfordMATH Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, OxfordMATH
27.
go back to reference Thenius R, Schmickl T, Crailsheim K (2005) The dance or work problem: why do not all honeybees dance with maximum intensity. Lect Notes Artif Intell 3690:246–255 Thenius R, Schmickl T, Crailsheim K (2005) The dance or work problem: why do not all honeybees dance with maximum intensity. Lect Notes Artif Intell 3690:246–255
28.
go back to reference Seeley TD (1995) The wisdom of the hive: the social physiology of honey bee colonies. Havard University Press, Cambridge Seeley TD (1995) The wisdom of the hive: the social physiology of honey bee colonies. Havard University Press, Cambridge
29.
go back to reference Huang M, Seeley TD (2003) Multiple unloadings by nectar foragers in honey bees: a matter of information improvement or crop fullness?. Insectes Sociaux 50:330–339CrossRef Huang M, Seeley TD (2003) Multiple unloadings by nectar foragers in honey bees: a matter of information improvement or crop fullness?. Insectes Sociaux 50:330–339CrossRef
30.
go back to reference Castro L (2007) Fundamentals of natural computing: an overview. Phys Life Rev 4(1):1–36CrossRef Castro L (2007) Fundamentals of natural computing: an overview. Phys Life Rev 4(1):1–36CrossRef
31.
go back to reference Anderson C (1998) Simulation of the feedbacks and regulation of recruitment dancing in honey bees. Adv Compl Syst 1:267–282CrossRef Anderson C (1998) Simulation of the feedbacks and regulation of recruitment dancing in honey bees. Adv Compl Syst 1:267–282CrossRef
32.
go back to reference Gregson A, Hart A, Holcombe M, Ratnieks F (2003) Partial nectar loads as a cause of multiple nectar transfer in the honey bee (apis mellifera): a simulation model. J Theor Biol 222(1): 1–8CrossRef Gregson A, Hart A, Holcombe M, Ratnieks F (2003) Partial nectar loads as a cause of multiple nectar transfer in the honey bee (apis mellifera): a simulation model. J Theor Biol 222(1): 1–8CrossRef
33.
go back to reference Schmickl T, Crailsheim K (2008) Analysing honeybees’ division of labour in broodcare by a multi-agent model. In: Bullock S, Noble J, Watson R, Bedau MA (eds) Artificial life XI: proceedings of the eleventh international conference on the simulation and synthesis of living systems, MIT Press, Cambridge, pp 529–536 Schmickl T, Crailsheim K (2008) Analysing honeybees’ division of labour in broodcare by a multi-agent model. In: Bullock S, Noble J, Watson R, Bedau MA (eds) Artificial life XI: proceedings of the eleventh international conference on the simulation and synthesis of living systems, MIT Press, Cambridge, pp 529–536
34.
go back to reference Schmickl T, Crailsheim K (2008) An individual-based model of task selection in honeybees. In: Goebel R, Siekmann J, Wahlster W (eds) From animals to animats 10. Lecture Notes in Artificial Intelligence, 5040, MIT Press, Cambridge, pp 383–392 Schmickl T, Crailsheim K (2008) An individual-based model of task selection in honeybees. In: Goebel R, Siekmann J, Wahlster W (eds) From animals to animats 10. Lecture Notes in Artificial Intelligence, 5040, MIT Press, Cambridge, pp 383–392
35.
go back to reference Schmickl T, Crailsheim K (2008) Taskselsim: a model of the self-organization of the division of labour in honeybees. Math Comput Model Dyn Syst 14:101–125MATHCrossRef Schmickl T, Crailsheim K (2008) Taskselsim: a model of the self-organization of the division of labour in honeybees. Math Comput Model Dyn Syst 14:101–125MATHCrossRef
36.
go back to reference Thenius R, Schmickl T, Crailsheim K (2008) Optimisation of a honeybee-colony’s energetics via social learning based on queuing delays. Connect Sci 20(2):193–210CrossRef Thenius R, Schmickl T, Crailsheim K (2008) Optimisation of a honeybee-colony’s energetics via social learning based on queuing delays. Connect Sci 20(2):193–210CrossRef
37.
go back to reference Wedde HF, Farooq M, Pannenbaecker T, Vogel B, Mueller C, Meth J, Jeruschkat R (2005) Beeadhoc: an energy efficient routing algorithm for mobile ad hoc networks inspired by bee behavior. In: GECCO ’05: proceedings of the 2005 conference on genetic and evolutionary computation. ACM, New York, pp 153–160 Wedde HF, Farooq M, Pannenbaecker T, Vogel B, Mueller C, Meth J, Jeruschkat R (2005) Beeadhoc: an energy efficient routing algorithm for mobile ad hoc networks inspired by bee behavior. In: GECCO ’05: proceedings of the 2005 conference on genetic and evolutionary computation. ACM, New York, pp 153–160
38.
go back to reference Wedde HF, Farooq M, Zhang Y (2004) Beehive: An efficient fault-tolerant routing algorithm inspired by honey bee behavior. In: Lecture notes in computer science. Number 3172, Springer, Berlin, pp 83–94 Wedde HF, Farooq M, Zhang Y (2004) Beehive: An efficient fault-tolerant routing algorithm inspired by honey bee behavior. In: Lecture notes in computer science. Number 3172, Springer, Berlin, pp 83–94
39.
go back to reference Tovey C (2004) The honey bee algorithm: a biological inspired approach to internet server optimization. Engineering Enterprise, Spring, pp 13–15 Tovey C (2004) The honey bee algorithm: a biological inspired approach to internet server optimization. Engineering Enterprise, Spring, pp 13–15
40.
go back to reference Pham D, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2006) The bees algorithm, a novel tool for complex optimisation problems. In: Proceedings of the 2nd international virtual conference on intelligent production machines and systems (IPROMS 2006), Elsevier, pp 454–459 Pham D, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2006) The bees algorithm, a novel tool for complex optimisation problems. In: Proceedings of the 2nd international virtual conference on intelligent production machines and systems (IPROMS 2006), Elsevier, pp 454–459
41.
go back to reference Dorigo M, Stützle T (2004) Ant colony optimization (Bradford Books). The MIT Press, CambridgeCrossRef Dorigo M, Stützle T (2004) Ant colony optimization (Bradford Books). The MIT Press, CambridgeCrossRef
42.
go back to reference Dorigo M, Bonabeau E, Theraulaz G (2000) Ant algorithms and stigmergy. Future Gener Comput Syst 16(9):851–871CrossRef Dorigo M, Bonabeau E, Theraulaz G (2000) Ant algorithms and stigmergy. Future Gener Comput Syst 16(9):851–871CrossRef
43.
go back to reference Bonabeau E, Henaux F, Guérin S, Snyers D, Kuntz P, Theraulaz G (January 1998) Routing in telecommunications networks with “smart” ant-like agents. Working papers 98-01-003, Santa Fe Institute Bonabeau E, Henaux F, Guérin S, Snyers D, Kuntz P, Theraulaz G (January 1998) Routing in telecommunications networks with “smart” ant-like agents. Working papers 98-01-003, Santa Fe Institute
44.
go back to reference Sugawara K, Kazama T, Watanabe T (2004) Foraging behavior of interacting robots with virtual pheromone. In: Proceedings of 2004 IEEE/RSJ international conference on intelligent robots and systems. IEEE Press, Los Alamitos, pp 3074–3079 Sugawara K, Kazama T, Watanabe T (2004) Foraging behavior of interacting robots with virtual pheromone. In: Proceedings of 2004 IEEE/RSJ international conference on intelligent robots and systems. IEEE Press, Los Alamitos, pp 3074–3079
45.
go back to reference Krieger MJB, Billeter JB (2000) The call of duty: self organised task allocation in a population of up to twelve mobile robots. Rob Auton Syst 30:65–84CrossRef Krieger MJB, Billeter JB (2000) The call of duty: self organised task allocation in a population of up to twelve mobile robots. Rob Auton Syst 30:65–84CrossRef
46.
go back to reference Payton D, Daily M, Estowski R, Howard M, Lee C (2001) Pheromone robotics. Auton Rob 11(3):319–324MATHCrossRef Payton D, Daily M, Estowski R, Howard M, Lee C (2001) Pheromone robotics. Auton Rob 11(3):319–324MATHCrossRef
47.
go back to reference Payton D, Estkowski R, Howrad M (2005) Pheromonic robotics and the logic of virtual pheromones. Lect Notes Comput Sci 3342:45–57CrossRef Payton D, Estkowski R, Howrad M (2005) Pheromonic robotics and the logic of virtual pheromones. Lect Notes Comput Sci 3342:45–57CrossRef
48.
go back to reference Garnier S, Jost C, Jeanson R, Gautrais J, Asadpour M, Caprari G, Theraulaz G (2005) Aggregation behaviour as a source of collective decision in a group of cockroach-like-robots. In: Capcarrere M (ed) Advances in artificial life: 8th European conference, ECAL 2005. Vol 3630 of LNAI. Springer, Berlin, pp 169–178 Garnier S, Jost C, Jeanson R, Gautrais J, Asadpour M, Caprari G, Theraulaz G (2005) Aggregation behaviour as a source of collective decision in a group of cockroach-like-robots. In: Capcarrere M (ed) Advances in artificial life: 8th European conference, ECAL 2005. Vol 3630 of LNAI. Springer, Berlin, pp 169–178
49.
go back to reference Schmickl T, Thenius R, Möslinger C, Radspieler G, Kernbach S, Crailsheim K (2008) Get in touch: cooperative decision making based on robot-to-robot collisions. Auton Agent Multi Agent Syst 18(1):133–155CrossRef Schmickl T, Thenius R, Möslinger C, Radspieler G, Kernbach S, Crailsheim K (2008) Get in touch: cooperative decision making based on robot-to-robot collisions. Auton Agent Multi Agent Syst 18(1):133–155CrossRef
50.
go back to reference Hamann H, Wörn H, Crailsheim K, Schmickl T (2008) Spatial macroscopic models of a bio-inspired robotic swarm algorithm. In: IEEE/RSJ 2008 international conference on intelligent robots and systems (IROS’08). IEEE Press, Los Alamitos, pp 1415–1420 Hamann H, Wörn H, Crailsheim K, Schmickl T (2008) Spatial macroscopic models of a bio-inspired robotic swarm algorithm. In: IEEE/RSJ 2008 international conference on intelligent robots and systems (IROS’08). IEEE Press, Los Alamitos, pp 1415–1420
51.
go back to reference Schmickl T, Möslinger C, Thenius R, Crailsheim K (2007) Bio-inspired navigation of autonomous robots in heterogenous environments. Int J Factory Autom Rob Soft Comput 3:164–170 Schmickl T, Möslinger C, Thenius R, Crailsheim K (2007) Bio-inspired navigation of autonomous robots in heterogenous environments. Int J Factory Autom Rob Soft Comput 3:164–170
52.
go back to reference Schmickl T, Möslinger C, Thenius R, Crailsheim K (2007) Individual adaptation allows collective path-finding in a robotic swarm. Int J Factory Autom Rob Soft Comput 4:102–108 Schmickl T, Möslinger C, Thenius R, Crailsheim K (2007) Individual adaptation allows collective path-finding in a robotic swarm. Int J Factory Autom Rob Soft Comput 4:102–108
53.
go back to reference Schmickl T, Crailsheim K (2008) Trophallaxis within a robotic swarm: bio-inspired communication among robots in a swarm. Auton Rob 25:171–188CrossRef Schmickl T, Crailsheim K (2008) Trophallaxis within a robotic swarm: bio-inspired communication among robots in a swarm. Auton Rob 25:171–188CrossRef
Metadata
Title
Swarm-intelligent foraging in honeybees: benefits and costs of task-partitioning and environmental fluctuations
Authors
Thomas Schmickl
Ronald Thenius
Karl Crailsheim
Publication date
01-03-2012
Publisher
Springer-Verlag
Published in
Neural Computing and Applications / Issue 2/2012
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-010-0357-9

Other articles of this Issue 2/2012

Neural Computing and Applications 2/2012 Go to the issue

Premium Partner