Skip to main content
Top
Published in: Journal of Electronic Materials 9/2022

02-07-2022 | Original Research Article

Synthesis and Characterization of Sr0.85Pb0.15Mn1−xSnxO3 Perovskite Manganite Nanostructures: Structural, Electrical, and Magnetic Properties

Authors: M. H. Ghozza, I. S. Yahia

Published in: Journal of Electronic Materials | Issue 9/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Manganite with perovskite structure of Sr0.85Pb0.15Mn1−xSnxO3 (x = 0.05, 0.10, 0.15, 0.20, and 0.25) nanoparticles was prepared by coprecipitation route and then annealed at 960°C for 10 h. X-ray diffraction (XRD) analysis reveals that all the obtained perovskites crystallize in an orthorhombic structure (pbnm space group) with traces as secondary phases. The crystallite sizes are 62.15, 51.4, 45, 51, and 56.78 nm for Sn0.05, Sn0.10, Sn0.15, Sn0.20, and Sn0.25 samples, respectively. Morphological investigations confirm the presence of fine nanosized particles of no similar shape and a high tendency to agglomerate. Energy-dispersive x-ray spectroscopy (EDS) and scanning electron microscopy (SEM) confirm the presence of consistent and estimated grain sizes with tin content in the grain size range 278, 192, and 238 nm for Sn0.05, Sn0.15, and Sn0.25 samples, respectively. The crystallite size and particle size show a low value for the Sn0.15 sample, indicating the well-incorporated Sn ions in the lattice. The DC electrical conductivity σDC data showed the presence of a semiconductor behavior in overall temperature range 303–428 K. The activation energy Ea is estimated for all the samples using the small polaron hopping (SPH) model conduction mechanism to be 0.3, 0.31, 0.36, 0.34, and 0.33 eV for Sn0.05, Sn0.10, Sn0.15, Sn0.20, and Sn0.25 samples, respectively. Ea shows a significant variation around 192-nm particle size. This can be explained in terms of long-range charge ordering (CO) melting around this particle size or the grain boundary associated with that sample's small crystallite and grain size. The best conductivity of 160.84 m−1 Ω−1 is for the Sn0.15 sample due to low crystallite and particle size, which improves grain boundaries and increases Ea. The magnetic field ± 20 kG dependence of magnetization is studied at room temperature. Sr0.85Pb0.15Mn1-xSnxO3 nanoparticles behave as paramagnetic, and the suppression of the scattering of the magnetic domain with an applied magnetic field is designated. Hc, Ms, and Mr are estimated and the best Hc = 50.99 G, Ms = 0.49 emu/g, and Mr = 25 × 10−4 was found for the Sn0.15 sample. According to obtained results, Sn embedded in manganite with excellent electrical and magnetic properties could be considered a promising candidate for electronic devices and storage media applications.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference X. Lang, H. Mo, Hu. Xiaoying, and H. Tian, Supercapacitor performance of perovskite La1−xSrxMnO3. Dalton Trans. 46, 13720 (2017).CrossRef X. Lang, H. Mo, Hu. Xiaoying, and H. Tian, Supercapacitor performance of perovskite La1xSrxMnO3. Dalton Trans. 46, 13720 (2017).CrossRef
3.
go back to reference W. Shi, R. Ding, X. Li, Q. Xu, D. Ying, Y. Huang, and E. Liu, Bimetallic Co-Mn perovskite fluorides as highly-stable electrode materials for supercapacitors. Chem Eur J. 23, 15305 (2017).CrossRef W. Shi, R. Ding, X. Li, Q. Xu, D. Ying, Y. Huang, and E. Liu, Bimetallic Co-Mn perovskite fluorides as highly-stable electrode materials for supercapacitors. Chem Eur J. 23, 15305 (2017).CrossRef
4.
go back to reference C. Doroftei, P.D. Popa, and F. Iacomi, Selectivity between methanol and ethanol gas of La-Pb-Fe-O perovskite synthesized by novel method. Sens Actuators A. 190, 176 (2013).CrossRef C. Doroftei, P.D. Popa, and F. Iacomi, Selectivity between methanol and ethanol gas of La-Pb-Fe-O perovskite synthesized by novel method. Sens Actuators A. 190, 176 (2013).CrossRef
5.
go back to reference C.S. Zhang, D.L. Hu, H. Gu, J.J. Xing, P. Xiong, D.Y. Wan, and Y.F. Gao, Crystallization and inter-diffusional behaviors in the formation of VO2 (B) thin film with layered W-doping. J. Adv. Ceram. 6, 196 (2017).CrossRef C.S. Zhang, D.L. Hu, H. Gu, J.J. Xing, P. Xiong, D.Y. Wan, and Y.F. Gao, Crystallization and inter-diffusional behaviors in the formation of VO2 (B) thin film with layered W-doping. J. Adv. Ceram. 6, 196 (2017).CrossRef
7.
go back to reference S. Afzal, X. Quan, and J. Zhang, High surface area mesoporous nano cast LaMO3 (M=Mn, Fe) perovskites for efficient catalytic ozonation and an insight into probable catalytic mechanism. Appl Catal B: Environ. 206, 69 (2017).CrossRef S. Afzal, X. Quan, and J. Zhang, High surface area mesoporous nano cast LaMO3 (M=Mn, Fe) perovskites for efficient catalytic ozonation and an insight into probable catalytic mechanism. Appl Catal B: Environ. 206, 69 (2017).CrossRef
8.
go back to reference A.C. Ianculescu, C.A. Vasilescu, M. Crisan, M. Raileanu, B.S. Vasile, M. Calugaru, D. Crisan, N. Dragan, L. Curecheriu, and L. Mitoseriu, Formation mechanism and characteristics of lanthanum doped BaTiO3 powders and ceramics prepared by the sol–gel process. Mater Charact. 105, 195 (2015).CrossRef A.C. Ianculescu, C.A. Vasilescu, M. Crisan, M. Raileanu, B.S. Vasile, M. Calugaru, D. Crisan, N. Dragan, L. Curecheriu, and L. Mitoseriu, Formation mechanism and characteristics of lanthanum doped BaTiO3 powders and ceramics prepared by the sol–gel process. Mater Charact. 105, 195 (2015).CrossRef
9.
go back to reference G. Groppi, M. Bellotto, C. Cristiam, P. Forzatti, and P.L. Villa, Preparation and characterization of hexaaluminate-based materials for catalytic combustion. Appl Catal A: Gen. 104, 101 (1993).CrossRef G. Groppi, M. Bellotto, C. Cristiam, P. Forzatti, and P.L. Villa, Preparation and characterization of hexaaluminate-based materials for catalytic combustion. Appl Catal A: Gen. 104, 101 (1993).CrossRef
10.
go back to reference J. Ovenstone, and C.B. Ponton, Emulsion processing of SOFC materials Ca0.3La0.7CrO3, Sr0.16La0.84CrO3, and Sr0.2La0.8MnO3. J. Mater. Sci. 35, 4115 (2000).CrossRef J. Ovenstone, and C.B. Ponton, Emulsion processing of SOFC materials Ca0.3La0.7CrO3, Sr0.16La0.84CrO3, and Sr0.2La0.8MnO3. J. Mater. Sci. 35, 4115 (2000).CrossRef
11.
go back to reference R. Mahendiran, S.K. Tiwary, A.K. Raychaudhuri, T.V. Ramakrishnan, R. Mahesh, N. Rangavittal, and C.N.R. Rao, Structure, electron transport properties, and giant magnetoresistance of hole-doped LaMnO3 systems. Phys. Rev. B. 53, 3348 (1996).CrossRef R. Mahendiran, S.K. Tiwary, A.K. Raychaudhuri, T.V. Ramakrishnan, R. Mahesh, N. Rangavittal, and C.N.R. Rao, Structure, electron transport properties, and giant magnetoresistance of hole-doped LaMnO3 systems. Phys. Rev. B. 53, 3348 (1996).CrossRef
15.
go back to reference G. Jakob, W. Westerburg, F. Martin, and H. Adrian, Small-polaron transport in La0.67Ca0.33MnO3thin films. Phys. Rev. B 58, 14966 (1998).CrossRef G. Jakob, W. Westerburg, F. Martin, and H. Adrian, Small-polaron transport in La0.67Ca0.33MnO3thin films. Phys. Rev. B 58, 14966 (1998).CrossRef
17.
go back to reference A. Nasri, E.K. Hlil, M. Ellouze, and F. Elhalouani, Critical behavior in the La0.6Ca0.4MnO3 perovskite manganite. J. Supercond Nov. Magn. 27, 2757 (2014).CrossRef A. Nasri, E.K. Hlil, M. Ellouze, and F. Elhalouani, Critical behavior in the La0.6Ca0.4MnO3 perovskite manganite. J. Supercond Nov. Magn. 27, 2757 (2014).CrossRef
18.
go back to reference M. Baazaoui, J. Khelifi, A. Dhahri, E.K. Hlil, E. Dhahri, and M. Oumezzine, Magnetocaloric effect and critical behavior around the phase transition temperature in La0.6Sr0.3Ca0.1Mn0.975Fe0.025O3 manganite. J. Supercond Nov. Magn. 28, 1217 (2015).CrossRef M. Baazaoui, J. Khelifi, A. Dhahri, E.K. Hlil, E. Dhahri, and M. Oumezzine, Magnetocaloric effect and critical behavior around the phase transition temperature in La0.6Sr0.3Ca0.1Mn0.975Fe0.025O3 manganite. J. Supercond Nov. Magn. 28, 1217 (2015).CrossRef
19.
go back to reference G.H. Jonker, and J.H. Van Santen, Ferromagnetic compounds of manganese with perovskite structure. Physica. 16, 337 (1950).CrossRef G.H. Jonker, and J.H. Van Santen, Ferromagnetic compounds of manganese with perovskite structure. Physica. 16, 337 (1950).CrossRef
20.
go back to reference C. Wang, Y. Liu, Lu. Yilin, Wu. Ping, and W. Zhou, The electronic structure and room temperature ferromagnetism in non-magnetic element X (X = Al, Mg and Li) doped SrSnO3 from hybrid functional calculations. Comput. Mater. Sci. 145, 102 (2018).CrossRef C. Wang, Y. Liu, Lu. Yilin, Wu. Ping, and W. Zhou, The electronic structure and room temperature ferromagnetism in non-magnetic element X (X = Al, Mg and Li) doped SrSnO3 from hybrid functional calculations. Comput. Mater. Sci. 145, 102 (2018).CrossRef
22.
go back to reference E. Tka, K. Cherif, and J. Dhahri, Evolution of structural, magnetic and magnetocaloric properties in Sn-doped manganites La0.57Nd0.1Sr0.33Mn1-xSnxO3 (x = 0.05-0.3). Appl. Phys. A. 116,1181 (2014) E. Tka, K. Cherif, and J. Dhahri, Evolution of structural, magnetic and magnetocaloric properties in Sn-doped manganites La0.57Nd0.1Sr0.33Mn1-xSnxO3 (x = 0.05-0.3). Appl. Phys. A. 116,1181 (2014)
24.
go back to reference I. Jankowska-Sumara, M. Podgórna, A. Majchrowski, and J. Żukrowski, Thermal analysis of phase transitions in PbZr1−xSnxO3 antiferroelectric single crystals. J. Therm. Anal. Calorim. 128, 713 (2017).CrossRef I. Jankowska-Sumara, M. Podgórna, A. Majchrowski, and J. Żukrowski, Thermal analysis of phase transitions in PbZr1xSnxO3 antiferroelectric single crystals. J. Therm. Anal. Calorim. 128, 713 (2017).CrossRef
25.
go back to reference C. Doroftei, P.D. Popa, and F. Iacomi, Study of the influence of nickel ions substitutes in barium stannates used as humidity resistive sensors. Sensors and Actuators A. 173, 24 (2012).CrossRef C. Doroftei, P.D. Popa, and F. Iacomi, Study of the influence of nickel ions substitutes in barium stannates used as humidity resistive sensors. Sensors and Actuators A. 173, 24 (2012).CrossRef
27.
go back to reference R.P. Pawar, S.S. Gaikwad, S.Y. Wu, D.P. Vijaya Puri, and Nade, Structural and magnetic properties of Sr0.6Ca0.4CoyMn1-yO3 (0.2≤y≤1.0) ceramic synthesized by chemical co precipitation. J. Alloys Compd. 741, 861 (2018).CrossRef R.P. Pawar, S.S. Gaikwad, S.Y. Wu, D.P. Vijaya Puri, and Nade, Structural and magnetic properties of Sr0.6Ca0.4CoyMn1-yO3 (0.2≤y≤1.0) ceramic synthesized by chemical co precipitation. J. Alloys Compd. 741, 861 (2018).CrossRef
28.
go back to reference T. Murauskas, V. Kubilius, Z. Saltyte, and V. Plausinaitiene, Metalorganic chemical vapor deposition and investigation of nonstoichiometry of undoped BaSnO3 and La-doped BaSnO3 thin films. Thin Solid Films 692, 137575 (2019).CrossRef T. Murauskas, V. Kubilius, Z. Saltyte, and V. Plausinaitiene, Metalorganic chemical vapor deposition and investigation of nonstoichiometry of undoped BaSnO3 and La-doped BaSnO3 thin films. Thin Solid Films 692, 137575 (2019).CrossRef
29.
go back to reference B. Revzin, E. Rozenberg, G. Gorodetsky, J. Pelleg, and I. Felner, Magnetization and magnetoresistance of magnetically soft manganite La0.67Sn0.33MnO3. J. Magnetism Mag. Mater. 215, 204 (2000).CrossRef B. Revzin, E. Rozenberg, G. Gorodetsky, J. Pelleg, and I. Felner, Magnetization and magnetoresistance of magnetically soft manganite La0.67Sn0.33MnO3. J. Magnetism Mag. Mater. 215, 204 (2000).CrossRef
30.
go back to reference A. Paul Blessington Selvadurai, V. Pazhanivelu, C. Jagadeeshwaran, R. Murugaraj, P.M. MohammedGazzali, and G. Chandrasekaran, An analysis on structural and magnetic properties of La1-xRExFeO3 (x = 0.0 and 0.5, RE = Nd, Sm and Gd) nanoparticles. Appl. Phys. A. 13, 123 (2017). https://doi.org/10.1007/s00339-016-0651-1.CrossRef A. Paul Blessington Selvadurai, V. Pazhanivelu, C. Jagadeeshwaran, R. Murugaraj, P.M. MohammedGazzali, and G. Chandrasekaran, An analysis on structural and magnetic properties of La1-xRExFeO3 (x = 0.0 and 0.5, RE = Nd, Sm and Gd) nanoparticles. Appl. Phys. A. 13, 123 (2017). https://​doi.​org/​10.​1007/​s00339-016-0651-1.CrossRef
31.
go back to reference I.A. Abdel-Latif, A.M. Ahmed, H.F. Mohamed, S.A. Saleh, J.A. Paixão, K.A. Ziq, M.K. Hamad, E.G. Al-Nahari, M.H. Ghozza, and S. Allam, Magnetocaloric effect, electric, and dielectric properties of Nd0.6Sr0.4MnxCo1−xO3 composites. J. Magn. Magn. Mater. 457, 126 (2018).CrossRef I.A. Abdel-Latif, A.M. Ahmed, H.F. Mohamed, S.A. Saleh, J.A. Paixão, K.A. Ziq, M.K. Hamad, E.G. Al-Nahari, M.H. Ghozza, and S. Allam, Magnetocaloric effect, electric, and dielectric properties of Nd0.6Sr0.4MnxCo1xO3 composites. J. Magn. Magn. Mater. 457, 126 (2018).CrossRef
32.
go back to reference M. Muralidharan, V. Anbarasu, A. Elaya Perumal, and K. Sivakumar, Room temperature ferromagnetism in Cr doped SrSnO3 perovskite system. J. Mater. Sci. Mater. Electron. 28, 4125 (2017).CrossRef M. Muralidharan, V. Anbarasu, A. Elaya Perumal, and K. Sivakumar, Room temperature ferromagnetism in Cr doped SrSnO3 perovskite system. J. Mater. Sci. Mater. Electron. 28, 4125 (2017).CrossRef
34.
go back to reference A. Karaphun, S. Phokha, S. Hunpratub, T. Putiuso, and E. Swatsitang, influence of Ba substitution, Fe doping and annealing effect on magnetic and optical properties of Sr0.9Ba0.1Ti1−xFexO3 nanoparticles prepared by the hydrothermal method. J Mater Sci. Mater Electron. 29, 8188 (2018).CrossRef A. Karaphun, S. Phokha, S. Hunpratub, T. Putiuso, and E. Swatsitang, influence of Ba substitution, Fe doping and annealing effect on magnetic and optical properties of Sr0.9Ba0.1Ti1xFexO3 nanoparticles prepared by the hydrothermal method. J Mater Sci. Mater Electron. 29, 8188 (2018).CrossRef
35.
go back to reference E. Tka, K. Cherif, and J. Dhahri, Evolution of structural, magnetic and magnetocaloric properties in Sn-doped manganites La0.57Nd0.1Sr0.33Mn1-xSnxO3 (x = 0.05-0.3). Appl. Phys. A. 116, 1181 (2014).CrossRef E. Tka, K. Cherif, and J. Dhahri, Evolution of structural, magnetic and magnetocaloric properties in Sn-doped manganites La0.57Nd0.1Sr0.33Mn1-xSnxO3 (x = 0.05-0.3). Appl. Phys. A. 116, 1181 (2014).CrossRef
36.
go back to reference C.S. Xiong, Q.P. Huang, Y.H. Xiong, Z.M. Ren, L.G. Wei, Y.D. Zhu, X.S. Li, and C.L. Sun, Electro-magnetic transport behavior of La0.7Ca0.3MnO3/SnO2 composites. Mater. Res. Bull. 43, 2048 (2008).CrossRef C.S. Xiong, Q.P. Huang, Y.H. Xiong, Z.M. Ren, L.G. Wei, Y.D. Zhu, X.S. Li, and C.L. Sun, Electro-magnetic transport behavior of La0.7Ca0.3MnO3/SnO2 composites. Mater. Res. Bull. 43, 2048 (2008).CrossRef
37.
go back to reference P.T.Phong, N.V.Khien, N.V.Dang, D.H.Manh, L.V.Hong, In-JaLee, Effect of pb substitution on structural and electrical transport of La0.7Ca0.3-xPbxMnO3 (0<x<0.3) manganites. 466, 44 (2015) P.T.Phong, N.V.Khien, N.V.Dang, D.H.Manh, L.V.Hong, In-JaLee, Effect of pb substitution on structural and electrical transport of La0.7Ca0.3-xPbxMnO3 (0<x<0.3) manganites. 466, 44 (2015)
38.
go back to reference A. Ben Jazia Kharrat, N. Moutia, K. Khirouni, and W. Boujelben, Investigation of electrical behavior and dielectric properties in polycristalline Pr0.8Sr0.2MnO3 manganite perovskite. Mater. Res. Bull. 105, 75 (2018).CrossRef A. Ben Jazia Kharrat, N. Moutia, K. Khirouni, and W. Boujelben, Investigation of electrical behavior and dielectric properties in polycristalline Pr0.8Sr0.2MnO3 manganite perovskite. Mater. Res. Bull. 105, 75 (2018).CrossRef
39.
go back to reference I.A. Abdel-Latif, A. Al-Hajry, H. Hashem, M.H. Ghoza, and Th. El-Sherbini, The particle size effect on some physical properties of neodymium cobaltate-manganites for hydrogen storage use. Am. Inst. Phys. 1370, 158 (2011). I.A. Abdel-Latif, A. Al-Hajry, H. Hashem, M.H. Ghoza, and Th. El-Sherbini, The particle size effect on some physical properties of neodymium cobaltate-manganites for hydrogen storage use. Am. Inst. Phys. 1370, 158 (2011).
40.
go back to reference A Salem, A study on the structural, electrical and dielectric properties of fluorescein dye as a new organic semiconductor material. IOSR J. Electr. Electron. Eng. (IOSR-JEEE). 11, 2320 (2016) A Salem, A study on the structural, electrical and dielectric properties of fluorescein dye as a new organic semiconductor material. IOSR J. Electr. Electron. Eng. (IOSR-JEEE). 11, 2320 (2016)
41.
go back to reference J. Wang, Y. Zhao, X. Shi, and L. Zhang, Effect of Mn dopant on the grain size and electrical properties of (Ba, Sr) TiO3 ceramics. J. Mater. Sci. Mater. Electron. 29, 11575 (2018).CrossRef J. Wang, Y. Zhao, X. Shi, and L. Zhang, Effect of Mn dopant on the grain size and electrical properties of (Ba, Sr) TiO3 ceramics. J. Mater. Sci. Mater. Electron. 29, 11575 (2018).CrossRef
42.
go back to reference M.H. Ghozza and I.S. Yahia, Impact of gadolinium doping on structure, electrical and magnetic properties of GdxCd1−xMnO3 manganite nanoparticles. J. Mater. Sci. Mater. Electron. 32, 1628 (2021).CrossRef M.H. Ghozza and I.S. Yahia, Impact of gadolinium doping on structure, electrical and magnetic properties of GdxCd1xMnO3 manganite nanoparticles. J. Mater. Sci. Mater. Electron. 32, 1628 (2021).CrossRef
43.
go back to reference M. Irfan Ullah, S.K. Hasanain, S. Hussain, and M. Usman, Improved magnetic, dielectric and optical properties of PbTi1−xFexO3 (0≤x≤0.60) system. J. Electron. Mater. 47, 4 (2018).CrossRef M. Irfan Ullah, S.K. Hasanain, S. Hussain, and M. Usman, Improved magnetic, dielectric and optical properties of PbTi1xFexO3 (0≤x≤0.60) system. J. Electron. Mater. 47, 4 (2018).CrossRef
44.
go back to reference M. Muralidharan, R. Thiyagarajan, K. Sivakumar, and K. Sivaji, Near infrared emission and enhanced ferromagnetism in Fe doped SrSnO3 perovskite structured nanorods. J. Mater. Sci. Mater. Electron. 30, 4634 (2019).CrossRef M. Muralidharan, R. Thiyagarajan, K. Sivakumar, and K. Sivaji, Near infrared emission and enhanced ferromagnetism in Fe doped SrSnO3 perovskite structured nanorods. J. Mater. Sci. Mater. Electron. 30, 4634 (2019).CrossRef
45.
go back to reference M.R. Manju, V. Punith Kumar, and V. Dayal, Investigation of ferromagnetic properties in Fe/Co substituted BaSnO3 perovskite stannates. Physica B. 500, 14 (2016).CrossRef M.R. Manju, V. Punith Kumar, and V. Dayal, Investigation of ferromagnetic properties in Fe/Co substituted BaSnO3 perovskite stannates. Physica B. 500, 14 (2016).CrossRef
46.
go back to reference M. Avinash, M. Muralidharan, S. Selvakumar, S. Hussain, and K. Sivaji, Induced ferromagnetism and enhanced optical behaviour in indium-doped barium stannate system. J. Mater. Sci. Mater. Electron. 31, 3375 (2020).CrossRef M. Avinash, M. Muralidharan, S. Selvakumar, S. Hussain, and K. Sivaji, Induced ferromagnetism and enhanced optical behaviour in indium-doped barium stannate system. J. Mater. Sci. Mater. Electron. 31, 3375 (2020).CrossRef
Metadata
Title
Synthesis and Characterization of Sr0.85Pb0.15Mn1−xSnxO3 Perovskite Manganite Nanostructures: Structural, Electrical, and Magnetic Properties
Authors
M. H. Ghozza
I. S. Yahia
Publication date
02-07-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 9/2022
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-09733-1

Other articles of this Issue 9/2022

Journal of Electronic Materials 9/2022 Go to the issue

2021 U.S. Workshop on Physics and Chemistry of II-VI Materials

XBn and XBp Detectors Based on Type II Superlattices

2021 U.S. Workshop on Physics and Chemistry of II-VI Materials

Studies of Scattering Mechanisms in Multilayer HgCdTe Heterostructures