Skip to main content
Top
Published in: Journal of Electronic Materials 5/2024

28-02-2024 | Original Research Article

Synthesis and Structural, Dielectric and Magnetic Properties of Al-Substituted Co-Li FNPs Synthesized by the Sol–Gel Method

Authors: Asha A. Nawpute, Sudarshan D. Tapsale, Sudarshan S. Gawali, Smita P. More, K. M. Jadhav

Published in: Journal of Electronic Materials | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, we used the sol–gel method with synergistic auto-combustion to fabricate Co0.8Li0.4Fe2−xAlxO4 ferrite nanoparticles (FNPs) with Al3+ substitution, and investigated their structural, dielectric, and magnetic properties. Citric acid (C6H8O7.H2O) was chosen as a chelating agent with a metal nitrate-citrate ratio of 1:3. The x-ray diffraction (XRD) pattern confirmed the crystalline development in the Co0.8Li0.4Fe2−xAlxO4 FNPs to a single phase with cubic geometry and spinel structure belonging to the space group Fd-3m oh7. The lattice constant (\(a\)) of Co-Li FNPs (x = 0.0) was recorded as 8.348 ± 0.002 Å, which was found to be decreased after Al-substitution up to 8.315 ± 0.002 Å for x = 0.6. The crystallite size (D) employing the Debye-Scherrer formula was found in the range of ~ 11–22 nm. High-resolution transmission electron microscopy (HRTEM) images showed single-crystal Co0.8Li0.4Fe2−xAlxO4 FNPs with a nearly spherical shape. The average particle size (\({D}_{{\text{avg}}}\)) determined through skewed histogram charts suggested a range up to ~ 21–28 ± 10 nm. The optical properties were studied by UV-visible spectroscopy. Adsorption-desorption curves were used to obtain pore size and volume. The dielectric constant (\(\varepsilon^{\prime }\)\()\), dielectric loss (\(\varepsilon^{\prime \prime }\)) and dielectric loss tangent (tan δ) all decreased exponentially with an increase in frequency. The substitution of Al3+ ion led to an increase in all dielectric parameters. The plot of magnetization versus applied magnetic field (M-H) showed that saturation magnetization decreased with Al3+substitution. The decrease in magnetization was attributed to the decrease in A–B interaction and may be due to the substitution of non-magnetic Al3+ ions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. Verma, P. Thakur, A.C.A. Sun, and A. Thakur, Investigation of structural, microstructural and electrical characteristics of hydrothermally synthesized Li0.5–0.5xCoxFe2.5–0.5xO4, (0.0≤ x≤ 0.4) ferrite nanoparticles. Phys. B Condens. Matter. 661, 414926 (2023).CrossRef R. Verma, P. Thakur, A.C.A. Sun, and A. Thakur, Investigation of structural, microstructural and electrical characteristics of hydrothermally synthesized Li0.5–0.5xCoxFe2.5–0.5xO4, (0.0≤ x≤ 0.4) ferrite nanoparticles. Phys. B Condens. Matter. 661, 414926 (2023).CrossRef
2.
go back to reference R. Venkatachalapathy, C. Manoharan, M. Venkateshwarlu, and Y. Saddeek, Solution combustion route for Ni and Al co-doped lithium ferrite nanoparticles: synthesis, the effect of doping on the structural, morphological, optical, and magnetic properties. Ceram. Int. 49, 6594 (2023).CrossRef R. Venkatachalapathy, C. Manoharan, M. Venkateshwarlu, and Y. Saddeek, Solution combustion route for Ni and Al co-doped lithium ferrite nanoparticles: synthesis, the effect of doping on the structural, morphological, optical, and magnetic properties. Ceram. Int. 49, 6594 (2023).CrossRef
3.
go back to reference S. Sobana, S. Alagumanian, R.D. Kumar, P. Sakthivel, and P. Sivakumar, Effect of Al3+ inclusion on characterization exploration magnetic and anti-cancer properties of cobalt ferrite nanoparticles synthesised by Co-precipitation process. IJEAT 9, 4191 (2020).CrossRef S. Sobana, S. Alagumanian, R.D. Kumar, P. Sakthivel, and P. Sivakumar, Effect of Al3+ inclusion on characterization exploration magnetic and anti-cancer properties of cobalt ferrite nanoparticles synthesised by Co-precipitation process. IJEAT 9, 4191 (2020).CrossRef
4.
go back to reference W. Anukool, R.A. El-Nabulsi, S. Dabagh, M. Almessiere, M.G.B. Ashiq, S. Guner, and A. Baykal, Effects of aluminum substitution on the microstructure and magnetic properties of cobalt ferrites prepared by the co-precipitation precursor. Appl. Phys. A 128, 713 (2022).CrossRef W. Anukool, R.A. El-Nabulsi, S. Dabagh, M. Almessiere, M.G.B. Ashiq, S. Guner, and A. Baykal, Effects of aluminum substitution on the microstructure and magnetic properties of cobalt ferrites prepared by the co-precipitation precursor. Appl. Phys. A 128, 713 (2022).CrossRef
5.
go back to reference A.M. Abu-Dief, M.S. Abdelbaky, D. Martínez-Blanco, Z. Amghouz, and S. García-Granda, Effect of chromium substitution on the structural and magnetic properties of nanocrystalline zinc ferrite. Mater. Chem. Phys. 174, 164 (2016).CrossRef A.M. Abu-Dief, M.S. Abdelbaky, D. Martínez-Blanco, Z. Amghouz, and S. García-Granda, Effect of chromium substitution on the structural and magnetic properties of nanocrystalline zinc ferrite. Mater. Chem. Phys. 174, 164 (2016).CrossRef
6.
go back to reference K. Raju, C. Balaji, and P.V. Reddy, Microwave properties of Al and Mn doped nickel ferrites at Ku band frequencies. J. Magn. Magn. Mater. 354, 383 (2014).CrossRef K. Raju, C. Balaji, and P.V. Reddy, Microwave properties of Al and Mn doped nickel ferrites at Ku band frequencies. J. Magn. Magn. Mater. 354, 383 (2014).CrossRef
7.
go back to reference T. Susi, J.C. Meyer, and J. Kotakoski, Quantifying transmission electron microscopy irradiation effects using two-dimensional materials. Nat. Rev. Phys. 1, 397 (2019).CrossRef T. Susi, J.C. Meyer, and J. Kotakoski, Quantifying transmission electron microscopy irradiation effects using two-dimensional materials. Nat. Rev. Phys. 1, 397 (2019).CrossRef
8.
go back to reference S.U. Rather, H.S. Bamufleh, and H. Alhumade, Structural, thermal, morphological, surface, chemical, and magnetic analysis of Al3+-doped nanostructured mixed-spinel cobalt ferrites. Ceram. Int. 47, 17361 (2021).CrossRef S.U. Rather, H.S. Bamufleh, and H. Alhumade, Structural, thermal, morphological, surface, chemical, and magnetic analysis of Al3+-doped nanostructured mixed-spinel cobalt ferrites. Ceram. Int. 47, 17361 (2021).CrossRef
9.
go back to reference D.A.J. Sunderraj, D. Ananthapadmanaban, K.A.V. Geethan, A.J. Rajan, Manufacture, mechanical properties and microstructural characterization of aluminium and iron metal matrix composite manufactured, Trends in Manufacturing and Engineering Management, (2021), pp 77–89 D.A.J. Sunderraj, D. Ananthapadmanaban, K.A.V. Geethan, A.J. Rajan, Manufacture, mechanical properties and microstructural characterization of aluminium and iron metal matrix composite manufactured, Trends in Manufacturing and Engineering Management, (2021), pp 77–89
10.
go back to reference J.A.O. Granados, P. Thangarasu, N. Singh, and J.M. Vázquez-Ramos, Tetracycline and its quantum dots for recognition of Al3+ and application in milk developing cells bio-imaging. Food Chem. 278, 523 (2019).CrossRefPubMed J.A.O. Granados, P. Thangarasu, N. Singh, and J.M. Vázquez-Ramos, Tetracycline and its quantum dots for recognition of Al3+ and application in milk developing cells bio-imaging. Food Chem. 278, 523 (2019).CrossRefPubMed
11.
go back to reference T. Dey, and D. Naughton, Cleaning and anti-reflective (AR) hydrophobic coating of glass surface: a review from materials science perspective. J. Sol–Gel Sci. Technol. 77, 1 (2016).CrossRef T. Dey, and D. Naughton, Cleaning and anti-reflective (AR) hydrophobic coating of glass surface: a review from materials science perspective. J. Sol–Gel Sci. Technol. 77, 1 (2016).CrossRef
12.
go back to reference J.K. Khan, M. Khalid, A.D. Chandio, K. Shahzadi, Z. Uddin, G. Mustafa, M.S. Akhtar, N.U. Channa, and Z.A. Gilani, Properties of Al3+ substituted nickel ferrite (NiAlxFe2–xO4) nanoparticles synthesised using wet sol–gel auto-combustion. J. Sol–Gel Sci. Technol. 101, 606 (2020).CrossRef J.K. Khan, M. Khalid, A.D. Chandio, K. Shahzadi, Z. Uddin, G. Mustafa, M.S. Akhtar, N.U. Channa, and Z.A. Gilani, Properties of Al3+ substituted nickel ferrite (NiAlxFe2–xO4) nanoparticles synthesised using wet sol–gel auto-combustion. J. Sol–Gel Sci. Technol. 101, 606 (2020).CrossRef
13.
go back to reference M.Z. Khan, I.H. Gul, M.M. Baig, and A.N. Khan, Comprehensive study on structural, electrical, magnetic and photocatalytic degradation properties of Al3+ ions substituted nickel ferrites nanoparticles. J. Alloys Compd. 848, 155795 (2020).CrossRef M.Z. Khan, I.H. Gul, M.M. Baig, and A.N. Khan, Comprehensive study on structural, electrical, magnetic and photocatalytic degradation properties of Al3+ ions substituted nickel ferrites nanoparticles. J. Alloys Compd. 848, 155795 (2020).CrossRef
14.
go back to reference L.A. Kolahalam, I.K. Viswanath, B.S. Diwakar, B. Govindh, V. Reddy, and Y. Murthy, Review on nanomaterials: synthesis and applications. Mater. Today Proc. 18, 2182 (2019).CrossRef L.A. Kolahalam, I.K. Viswanath, B.S. Diwakar, B. Govindh, V. Reddy, and Y. Murthy, Review on nanomaterials: synthesis and applications. Mater. Today Proc. 18, 2182 (2019).CrossRef
15.
go back to reference A.E. Danks, S.R. Hall, and Z. Schnepp, The evolution of ‘sol–gel’chemistry as a technique for materials synthesis. Mater. Horiz. 3, 91 (2016).CrossRef A.E. Danks, S.R. Hall, and Z. Schnepp, The evolution of ‘sol–gel’chemistry as a technique for materials synthesis. Mater. Horiz. 3, 91 (2016).CrossRef
16.
go back to reference D.H. Sun, J.L. Zhang, and D.X. Sun, Synthesis and characterization of MFe2O4 (M = Co, Ni) nanoparticles. Adv. Mater. Res. 236, 1893 (2011).CrossRef D.H. Sun, J.L. Zhang, and D.X. Sun, Synthesis and characterization of MFe2O4 (M = Co, Ni) nanoparticles. Adv. Mater. Res. 236, 1893 (2011).CrossRef
17.
go back to reference M. Anupama, N. Srinatha, S. Matteppanavar, B. Angadi, B. Sahoo, and B. Rudraswamy, Effect of Zn substitution on the structural and magnetic properties of nanocrystalline NiFe2O4 ferrites. Ceram. Int. 44, 4946 (2018).CrossRef M. Anupama, N. Srinatha, S. Matteppanavar, B. Angadi, B. Sahoo, and B. Rudraswamy, Effect of Zn substitution on the structural and magnetic properties of nanocrystalline NiFe2O4 ferrites. Ceram. Int. 44, 4946 (2018).CrossRef
18.
go back to reference J. Huo, and M. Wei, Characterization and magnetic properties of nanocrystalline nickel ferrite synthesized by hydrothermal method. Mater. Lett. 63, 1183 (2009).CrossRef J. Huo, and M. Wei, Characterization and magnetic properties of nanocrystalline nickel ferrite synthesized by hydrothermal method. Mater. Lett. 63, 1183 (2009).CrossRef
19.
go back to reference I. Kazeminezhad, and S. Mosivand, Phase transition of electrooxidized Fe3O4 to γ and α-Fe2O3 nanoparticles using sintering treatment. Acta Phys. Polon. A 125, 1210 (2014).CrossRef I. Kazeminezhad, and S. Mosivand, Phase transition of electrooxidized Fe3O4 to γ and α-Fe2O3 nanoparticles using sintering treatment. Acta Phys. Polon. A 125, 1210 (2014).CrossRef
20.
go back to reference A.I. Borhan, V. Hulea, A.R. Iordan, and M.N. Palamaru, Cr3+ and Al3+ co-substituted zinc ferrite: structural analysis, magnetic and electrical properties. Polyhedron 70, 110 (2014).CrossRef A.I. Borhan, V. Hulea, A.R. Iordan, and M.N. Palamaru, Cr3+ and Al3+ co-substituted zinc ferrite: structural analysis, magnetic and electrical properties. Polyhedron 70, 110 (2014).CrossRef
21.
go back to reference R. Martin, J. Savory, S. Brown, R. Bertholf, and M. Wills, Transferrin binding of Al3+ and Fe3+. Clin. Chem. 33, 405 (1987).CrossRefPubMed R. Martin, J. Savory, S. Brown, R. Bertholf, and M. Wills, Transferrin binding of Al3+ and Fe3+. Clin. Chem. 33, 405 (1987).CrossRefPubMed
22.
go back to reference R. Vishwaroop, and S.N. Mathad, Synthesis, structural, WH plot and size-strain analysis of nano cobalt doped MgFe2O4 Ferrite. Sci. Sinter. 52, 1 (2020).CrossRef R. Vishwaroop, and S.N. Mathad, Synthesis, structural, WH plot and size-strain analysis of nano cobalt doped MgFe2O4 Ferrite. Sci. Sinter. 52, 1 (2020).CrossRef
23.
go back to reference S.K. Sen, U.C. Barman, M. Manir, P. Mondal, S. Dutta, M. Paul, M. Chowdhury, and M. Hakim, X-ray peak profile analysis of pure and Dy-doped α-MoO3 nanobelts using Debye-Scherrer, Williamson-Hall and Halder-Wagner methods. Adv. Nat. Sci. Nanosci. Nanotechnol. 11, 025004 (2020).CrossRef S.K. Sen, U.C. Barman, M. Manir, P. Mondal, S. Dutta, M. Paul, M. Chowdhury, and M. Hakim, X-ray peak profile analysis of pure and Dy-doped α-MoO3 nanobelts using Debye-Scherrer, Williamson-Hall and Halder-Wagner methods. Adv. Nat. Sci. Nanosci. Nanotechnol. 11, 025004 (2020).CrossRef
24.
go back to reference F. De Boer, J. Van Santen, and E. Verwey, The electrostatic contribution to the lattice energy of some ordered spinels. J. Chem. Phys. 18, 1032 (1950).CrossRef F. De Boer, J. Van Santen, and E. Verwey, The electrostatic contribution to the lattice energy of some ordered spinels. J. Chem. Phys. 18, 1032 (1950).CrossRef
25.
go back to reference C.G. Lima, A.J. Araujo, R.M. Silva, R.A. Raimundo, J.P. Grilo, G. Constantinescu, and D.A. Macedo, Electrical assessment of brownmillerite-type calcium ferrite materials obtained by proteic sol–gel route and by solid-state reaction using mollusk shells. J. Solid State Chem. 299, 122172 (2021).CrossRef C.G. Lima, A.J. Araujo, R.M. Silva, R.A. Raimundo, J.P. Grilo, G. Constantinescu, and D.A. Macedo, Electrical assessment of brownmillerite-type calcium ferrite materials obtained by proteic sol–gel route and by solid-state reaction using mollusk shells. J. Solid State Chem. 299, 122172 (2021).CrossRef
26.
go back to reference H. Zhao, Z. Zheng, K.W. Wong, S. Wang, B. Huang, and D. Li, Fabrication and electrochemical performance of nickel ferrite nanoparticles as anode material in lithium ion batteries. Electrochem. Commun. 9, 2606 (2007).CrossRef H. Zhao, Z. Zheng, K.W. Wong, S. Wang, B. Huang, and D. Li, Fabrication and electrochemical performance of nickel ferrite nanoparticles as anode material in lithium ion batteries. Electrochem. Commun. 9, 2606 (2007).CrossRef
27.
go back to reference O.O. Olatunji, S. Akinlabi, N. Madushele, P.A. Adedeji, and M.J. Ndolomingo, Geospatial investigation of physicochemical properties and thermodynamic parameters of biomass residue for energy generation. Biomass Conv. Bioref. 11, 2813 (2020).CrossRef O.O. Olatunji, S. Akinlabi, N. Madushele, P.A. Adedeji, and M.J. Ndolomingo, Geospatial investigation of physicochemical properties and thermodynamic parameters of biomass residue for energy generation. Biomass Conv. Bioref. 11, 2813 (2020).CrossRef
28.
go back to reference P. Maziarka, C. Wurzer, P.J. Arauzo, A. Dieguez-Alonso, O. Mašek, and F. Ronsse, Do you BET on routine? The reliability of N2 physisorption for the quantitative assessment of biochar’s surface area. Chem. Eng. J. 418, 129234 (2021).CrossRef P. Maziarka, C. Wurzer, P.J. Arauzo, A. Dieguez-Alonso, O. Mašek, and F. Ronsse, Do you BET on routine? The reliability of N2 physisorption for the quantitative assessment of biochar’s surface area. Chem. Eng. J. 418, 129234 (2021).CrossRef
29.
go back to reference M. Saberi, and P. Rouhi, Extension of the Brunauer-Emmett-Teller (BET) model for sorption of gas mixtures on the solid substances. Fluid Phase Equilib. 534, 112968 (2021).CrossRef M. Saberi, and P. Rouhi, Extension of the Brunauer-Emmett-Teller (BET) model for sorption of gas mixtures on the solid substances. Fluid Phase Equilib. 534, 112968 (2021).CrossRef
30.
go back to reference S. Lowell, and J.E. Shields, Powder Surface Area and Porosity (Springer Science & Business Media, 2013). S. Lowell, and J.E. Shields, Powder Surface Area and Porosity (Springer Science & Business Media, 2013).
31.
go back to reference A. Raut, P. Khirade, A. Humbe, S. Jadhav, and D. Shengule, Structural, electrical, dielectric and magnetic properties of Al3+ substituted Ni-Zn ferrite. J. Supercond. Novel Magn. 29, 1331 (2016).CrossRef A. Raut, P. Khirade, A. Humbe, S. Jadhav, and D. Shengule, Structural, electrical, dielectric and magnetic properties of Al3+ substituted Ni-Zn ferrite. J. Supercond. Novel Magn. 29, 1331 (2016).CrossRef
32.
go back to reference A. Maqsood, and K. Khan, Structural and microwave absorption properties of Ni(1–x)Co(x)Fe2O4 (0.0≤ x≤ 0.5) nanoferrites synthesized via co-precipitation route. J. Alloys Compd. 509, 3393 (2011).CrossRef A. Maqsood, and K. Khan, Structural and microwave absorption properties of Ni(1–x)Co(x)Fe2O4 (0.0≤ x≤ 0.5) nanoferrites synthesized via co-precipitation route. J. Alloys Compd. 509, 3393 (2011).CrossRef
33.
go back to reference K.M. Batoo, and S. Kumar, Synthesisation, electrical and magnetic properties of Al doped nano ferrite particles. Int. J. Nanopart. 2, 416 (2009).CrossRef K.M. Batoo, and S. Kumar, Synthesisation, electrical and magnetic properties of Al doped nano ferrite particles. Int. J. Nanopart. 2, 416 (2009).CrossRef
34.
go back to reference A. Raghavender, and K. Jadhav, Dielectric properties of Al-substituted Co ferrite nanoparticles. Bull. Mater. Sci. 32, 575 (2009).CrossRef A. Raghavender, and K. Jadhav, Dielectric properties of Al-substituted Co ferrite nanoparticles. Bull. Mater. Sci. 32, 575 (2009).CrossRef
35.
go back to reference S.B. Narang, and K. Pubby, Nickel spinel ferrites: a review. J. Magn. Magn. Mater. 519, 167163 (2021).CrossRef S.B. Narang, and K. Pubby, Nickel spinel ferrites: a review. J. Magn. Magn. Mater. 519, 167163 (2021).CrossRef
36.
go back to reference K. Singha, R. Jasrotia, V.P. Singh, M. Chandel, R. Kumar, and S. Kalia, A study of magnetic properties of Y-Ni–Mn substituted Co2 Z-type nanohexaferrites via vibrating sample magnetometry. J. Sol–Gel Sci. Technol. 97, 373 (2021).CrossRef K. Singha, R. Jasrotia, V.P. Singh, M. Chandel, R. Kumar, and S. Kalia, A study of magnetic properties of Y-Ni–Mn substituted Co2 Z-type nanohexaferrites via vibrating sample magnetometry. J. Sol–Gel Sci. Technol. 97, 373 (2021).CrossRef
37.
go back to reference A. Raut, R. Barkule, D. Shengule, and K. Jadhav, Synthesis, structural investigation and magnetic properties of Zn2+substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique. J. Magn. Magn. Mater. 358, 87 (2014).CrossRef A. Raut, R. Barkule, D. Shengule, and K. Jadhav, Synthesis, structural investigation and magnetic properties of Zn2+substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique. J. Magn. Magn. Mater. 358, 87 (2014).CrossRef
38.
go back to reference S. Dagar, A. Hooda, and S. Khasa, Structural and magnetic investigations of innovative lead-free particulate composites of NBT-M-type SrFe12O19 Hexaferrite. Vacuum 177, 109436 (2020).CrossRef S. Dagar, A. Hooda, and S. Khasa, Structural and magnetic investigations of innovative lead-free particulate composites of NBT-M-type SrFe12O19 Hexaferrite. Vacuum 177, 109436 (2020).CrossRef
39.
go back to reference S.R. Patade, D.D. Andhare, S.B. Somvanshi, S.A. Jadhav, M.V. Khedkar, and K. Jadhav, Self-heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment. Ceram. Int. 46, 25576 (2020).CrossRef S.R. Patade, D.D. Andhare, S.B. Somvanshi, S.A. Jadhav, M.V. Khedkar, and K. Jadhav, Self-heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment. Ceram. Int. 46, 25576 (2020).CrossRef
Metadata
Title
Synthesis and Structural, Dielectric and Magnetic Properties of Al-Substituted Co-Li FNPs Synthesized by the Sol–Gel Method
Authors
Asha A. Nawpute
Sudarshan D. Tapsale
Sudarshan S. Gawali
Smita P. More
K. M. Jadhav
Publication date
28-02-2024
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 5/2024
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-024-10971-8

Other articles of this Issue 5/2024

Journal of Electronic Materials 5/2024 Go to the issue