Skip to main content
Top
Published in: Journal of Electronic Materials 5/2024

27-02-2024 | Original Research Article

Crystal Structure, Microstructure, and Microwave Dielectric Properties of MgGa2O4 and ZnGa2O4 Ceramics Prepared by a Reaction Sintering Method

Authors: Zitao Shi, Shasha Li, Zeyu Zheng, Xiaodong Feng, Zixuan Fang, Jun Yang, Bin Tang

Published in: Journal of Electronic Materials | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The rapidly developing field of wireless communication technology requires advanced microwave dielectric ceramic materials. Here, spinel-structured MgGa2O4 and ZnGa2O4 ceramics were prepared using a reaction sintering method. The effect of sintering temperature was investigated with respect to the crystal structure, microstructure, and microwave dielectric properties of MgGa2O4 and ZnGa2O4 ceramics. Rietveld refinement analysis and quality factor (Q×f) values suggested that the occupancy sites and percentage of cations in MgGa2O4 would affect the microwave dielectric properties. Microstructure analysis indicated that abnormal grain growth at higher sintering temperatures would degrade the microwave dielectric properties of ZnGa2O4 ceramics. MgGa2O4 ceramics sintered at 1610°C exhibited promising microwave dielectric properties, i.e., εr = 9.4, Q×f = 167,500 GHz, and τf = −63 ppm/°C, while ZnGa2O4 ceramics sintered at 1550°C possessed a higher εr and a lower Q×f value of 10.5 and 126,900 GHz, respectively, and τf = −60 ppm/°C. The τf values of MgGa2O4 and ZnGa2O4 ceramics were tuned to near-zero levels by adding 8 mol.% CaTiO3. These results indicate that MgGa2O4 and ZnGa2O4 ceramics produced by reaction sintering show promise for applications in the field of 5G communication.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D.S. McClure, The distribution of transition metal cations in spinels. J. Phys. Chem. Solids 3, 311 (1957).CrossRef D.S. McClure, The distribution of transition metal cations in spinels. J. Phys. Chem. Solids 3, 311 (1957).CrossRef
2.
go back to reference T. Parida, A. Karati, K. Guruvidyathri, B.S. Murty, and G. Markandeyulu, Novel rare-earth and transition metal-based entropy stabilized oxides with spinel structure. Scr. Mater. 178, 513 (2020).CrossRef T. Parida, A. Karati, K. Guruvidyathri, B.S. Murty, and G. Markandeyulu, Novel rare-earth and transition metal-based entropy stabilized oxides with spinel structure. Scr. Mater. 178, 513 (2020).CrossRef
3.
go back to reference A.K. Lebechi, A.K. Ipadeola, K. Eid, A.M. Abdullah, and K.I. Ozoemena, Porous spinel-type transition metal oxide nanostructures as emergent electrocatalysts for oxygen reduction reactions. Nanoscale 14, 10717 (2022).CrossRef A.K. Lebechi, A.K. Ipadeola, K. Eid, A.M. Abdullah, and K.I. Ozoemena, Porous spinel-type transition metal oxide nanostructures as emergent electrocatalysts for oxygen reduction reactions. Nanoscale 14, 10717 (2022).CrossRef
4.
go back to reference P.G. Casado, and I. Rasines, Crystal data for the spinels MGa2O4 (M = Mg, Mn). Z. Für Krist. 160, 33 (1982).CrossRef P.G. Casado, and I. Rasines, Crystal data for the spinels MGa2O4 (M = Mg, Mn). Z. Für Krist. 160, 33 (1982).CrossRef
5.
go back to reference A. Kan, T. Moriyama, S. Takahashi, and H. Ogawa, Cation distributions and microwave dielectric properties of spinel-structured MgGa2O4 ceramics. Jpn. J. Appl. Phys. 52, 09KH01 (2013).CrossRef A. Kan, T. Moriyama, S. Takahashi, and H. Ogawa, Cation distributions and microwave dielectric properties of spinel-structured MgGa2O4 ceramics. Jpn. J. Appl. Phys. 52, 09KH01 (2013).CrossRef
6.
go back to reference H. Ouchi and S. Kawashima, Dielectric ceramics for microwave application. Jpn. J. Appl. Phys. 24, 60 (1985).CrossRef H. Ouchi and S. Kawashima, Dielectric ceramics for microwave application. Jpn. J. Appl. Phys. 24, 60 (1985).CrossRef
7.
go back to reference I.M. Reaney and D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89, 2063 (2006).CrossRef I.M. Reaney and D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89, 2063 (2006).CrossRef
8.
go back to reference R.D. Shannon and G.R. Rossman, Dielectric constant of MgAl2O4 spinel and the oxide additivity rule. J. Phys. Chem. Solids 52, 1055 (1991).CrossRef R.D. Shannon and G.R. Rossman, Dielectric constant of MgAl2O4 spinel and the oxide additivity rule. J. Phys. Chem. Solids 52, 1055 (1991).CrossRef
9.
go back to reference K.P. Surendran, P.V. Bijumon, P. Mohanan, and M.T. Sebastian, (1–x)MgAl2O4-xTiO2 dielectrics for microwave and millimeter wave applications. Appl. Phys. A 81, 823 (2005).CrossRef K.P. Surendran, P.V. Bijumon, P. Mohanan, and M.T. Sebastian, (1–x)MgAl2O4-xTiO2 dielectrics for microwave and millimeter wave applications. Appl. Phys. A 81, 823 (2005).CrossRef
10.
go back to reference K.P. Surendran, N. Santha, P. Mohanan, and M.T. Sebastian, Temperature stable low loss ceramic dielectrics in (1–x)ZnAl2O4-xTiO2 system for microwave substrate applications. Eur. Phys. J. B Condens. Matter Complex Syst. 41, 301 (2004).CrossRef K.P. Surendran, N. Santha, P. Mohanan, and M.T. Sebastian, Temperature stable low loss ceramic dielectrics in (1–x)ZnAl2O4-xTiO2 system for microwave substrate applications. Eur. Phys. J. B Condens. Matter Complex Syst. 41, 301 (2004).CrossRef
11.
go back to reference C.W. Zheng, S.Y. Wu, X.M. Chen, and K.X. Song, Modification of MgAl2O4 microwave dielectric ceramics by Zn substitution. J. Am. Ceram. Soc. 90, 1483 (2007).CrossRef C.W. Zheng, S.Y. Wu, X.M. Chen, and K.X. Song, Modification of MgAl2O4 microwave dielectric ceramics by Zn substitution. J. Am. Ceram. Soc. 90, 1483 (2007).CrossRef
12.
go back to reference C.-L. Huang, C.-Y. Tai, C.-Y. Huang, and Y.-H. Chien, Low-loss microwave dielectrics in the spinel-structured (Mg1−xNix)Al2O4 solid solutions. J. Am. Ceram. Soc. 93, 1999 (2010).CrossRef C.-L. Huang, C.-Y. Tai, C.-Y. Huang, and Y.-H. Chien, Low-loss microwave dielectrics in the spinel-structured (Mg1−xNix)Al2O4 solid solutions. J. Am. Ceram. Soc. 93, 1999 (2010).CrossRef
13.
go back to reference S. Wu, J. Xue, and Y. Fan, Spinel Mg(Al, Ga)2O4 solid solution as high-performance microwave dielectric ceramics. J. Am. Ceram. Soc. 97, 3555 (2014).CrossRef S. Wu, J. Xue, and Y. Fan, Spinel Mg(Al, Ga)2O4 solid solution as high-performance microwave dielectric ceramics. J. Am. Ceram. Soc. 97, 3555 (2014).CrossRef
14.
go back to reference J. Yu, C. Shen, and T. Qiu, Effect of microwave sintering on the microstructure and dielectric properties of 0.92MgAl2O4–0.08(Ca0.8Sr0.2)TiO3 Ceramics. J. Mater. Sci. Mater. Electron. 26, 2737 (2015).CrossRef J. Yu, C. Shen, and T. Qiu, Effect of microwave sintering on the microstructure and dielectric properties of 0.92MgAl2O4–0.08(Ca0.8Sr0.2)TiO3 Ceramics. J. Mater. Sci. Mater. Electron. 26, 2737 (2015).CrossRef
15.
go back to reference W. Lei, W.-Z. Lu, D. Liu, and J.-H. Zhu, Phase evolution and microwave dielectric properties of (1–x)ZnAl2O4−xMg2TiO4 ceramics. J. Am. Ceram. Soc. 92, 105 (2009).CrossRef W. Lei, W.-Z. Lu, D. Liu, and J.-H. Zhu, Phase evolution and microwave dielectric properties of (1–x)ZnAl2O4−xMg2TiO4 ceramics. J. Am. Ceram. Soc. 92, 105 (2009).CrossRef
16.
go back to reference X. Lu, Z. Du, B. Quan, W. Bian, H. Zhu, and Q. Zhang, structural dependence of the microwave dielectric properties of Cr3+-substituted ZnGa2O4 spinel ceramics: crystal distortion and vibration mode studies. J. Mater. Chem. C 7, 8261 (2019).CrossRef X. Lu, Z. Du, B. Quan, W. Bian, H. Zhu, and Q. Zhang, structural dependence of the microwave dielectric properties of Cr3+-substituted ZnGa2O4 spinel ceramics: crystal distortion and vibration mode studies. J. Mater. Chem. C 7, 8261 (2019).CrossRef
17.
go back to reference J. Xue, S. Wu, and J. Li, Synthesis, microstructure, and microwave dielectric properties of spinel ZnGa2O4 ceramics. J. Am. Ceram. Soc. 96, 2481 (2013).CrossRef J. Xue, S. Wu, and J. Li, Synthesis, microstructure, and microwave dielectric properties of spinel ZnGa2O4 ceramics. J. Am. Ceram. Soc. 96, 2481 (2013).CrossRef
18.
go back to reference A. Kan, S. Takahashi, T. Moriyama, and H. Ogawa, Influence of Zn substitution for Mg on microwave dielectric properties of spinel-structured (Mg1−xZnx)Ga2O4 solid solutions. Jpn. J. Appl. Phys. 53, 09PB03 (2014).CrossRef A. Kan, S. Takahashi, T. Moriyama, and H. Ogawa, Influence of Zn substitution for Mg on microwave dielectric properties of spinel-structured (Mg1−xZnx)Ga2O4 solid solutions. Jpn. J. Appl. Phys. 53, 09PB03 (2014).CrossRef
19.
go back to reference X. Lu, W. Bian, Y. Li, H. Zhu, Z. Fu, and Q. Zhang, Cation distributions and microwave dielectric properties of Cu-substituted ZnGa2O4 spinel ceramics. Ceram. Int. 43, 13839 (2017).CrossRef X. Lu, W. Bian, Y. Li, H. Zhu, Z. Fu, and Q. Zhang, Cation distributions and microwave dielectric properties of Cu-substituted ZnGa2O4 spinel ceramics. Ceram. Int. 43, 13839 (2017).CrossRef
20.
go back to reference X. Lyu, L. Ren, L. Xin, Z. Li, X. Zhang, Z. Luo, P. Shao, Y. Zhang, P. Lyu, and M. Zhang, Low temperature sintering, structure and microwave dielectric properties of novel (1–x)MgGa2O4–xCuMoO4 ceramics for LTCC applications. ACS Sustain. Chem. Eng. 11, 7002 (2023).CrossRef X. Lyu, L. Ren, L. Xin, Z. Li, X. Zhang, Z. Luo, P. Shao, Y. Zhang, P. Lyu, and M. Zhang, Low temperature sintering, structure and microwave dielectric properties of novel (1–x)MgGa2O4–xCuMoO4 ceramics for LTCC applications. ACS Sustain. Chem. Eng. 11, 7002 (2023).CrossRef
21.
go back to reference Y. Xiong, H. Xie, Z. Rao, L. Liu, Z. Wang, and C. Li, Compositional modulation in ZnGa2O4 via Zn2+/Ge4+ Co-doping to simultaneously lower sintering temperature and improve microwave dielectric properties. J. Adv. Ceram. 10, 1360 (2021).CrossRef Y. Xiong, H. Xie, Z. Rao, L. Liu, Z. Wang, and C. Li, Compositional modulation in ZnGa2O4 via Zn2+/Ge4+ Co-doping to simultaneously lower sintering temperature and improve microwave dielectric properties. J. Adv. Ceram. 10, 1360 (2021).CrossRef
22.
go back to reference Y.-C. Liou, C.-T. Wu, K.-H. Tseng, and T.-C. Chung, Synthesis of BaTi4O9 ceramics by reaction-sintering process. Mater. Res. Bull. 40, 1483 (2005).CrossRef Y.-C. Liou, C.-T. Wu, K.-H. Tseng, and T.-C. Chung, Synthesis of BaTi4O9 ceramics by reaction-sintering process. Mater. Res. Bull. 40, 1483 (2005).CrossRef
23.
go back to reference L. He, H. Yu, M. Zeng, E. Li, J. Liu, and S. Zhang, Phase compositions and microwave dielectric properties of MgTiO3-based ceramics obtained by reaction-sintering method. J. Electroceramics 40, 360 (2018).CrossRef L. He, H. Yu, M. Zeng, E. Li, J. Liu, and S. Zhang, Phase compositions and microwave dielectric properties of MgTiO3-based ceramics obtained by reaction-sintering method. J. Electroceramics 40, 360 (2018).CrossRef
24.
go back to reference X. Wang, K. Liu, S. Zhou, S. He, S. Deng, Y. Xiao, X. Chen, and H. Zhou, Reaction sintering and mechanism of microwave dielectric ceramic with K2NiF4 structure and perovskite structure. J. Mater. Sci. Mater. Electron. 33, 2213 (2022).CrossRef X. Wang, K. Liu, S. Zhou, S. He, S. Deng, Y. Xiao, X. Chen, and H. Zhou, Reaction sintering and mechanism of microwave dielectric ceramic with K2NiF4 structure and perovskite structure. J. Mater. Sci. Mater. Electron. 33, 2213 (2022).CrossRef
25.
go back to reference B.W. Hakki and P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Trans. Microw. Theory Tech. 8, 402 (1960).CrossRef B.W. Hakki and P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Trans. Microw. Theory Tech. 8, 402 (1960).CrossRef
26.
go back to reference A. Luchechko, V. Vasyltsiv, M. Kushlyk, D. Slobodzyan, M. Baláž, J. Cebulski, K. Szmuc, J. Szlęzak, and Y. Shpotyuk, Structural and luminescence characterization of β-Ga2O3 nanopowders obtained via high-energy ball milling. Appl. Nanosci. 13, 5149 (2023).CrossRef A. Luchechko, V. Vasyltsiv, M. Kushlyk, D. Slobodzyan, M. Baláž, J. Cebulski, K. Szmuc, J. Szlęzak, and Y. Shpotyuk, Structural and luminescence characterization of β-Ga2O3 nanopowders obtained via high-energy ball milling. Appl. Nanosci. 13, 5149 (2023).CrossRef
27.
go back to reference I.D. Brown and R.D. Shannon, Empirical bond-strength–bond-length curves for oxides. Acta Crystallogr. A 29, 266 (1973).CrossRef I.D. Brown and R.D. Shannon, Empirical bond-strength–bond-length curves for oxides. Acta Crystallogr. A 29, 266 (1973).CrossRef
28.
go back to reference I.D. Brown and K.K. Wu, Empirical parameters for calculating cation-oxygen bond valences. Acta Crystallogr. B 32, 1957 (1976).CrossRef I.D. Brown and K.K. Wu, Empirical parameters for calculating cation-oxygen bond valences. Acta Crystallogr. B 32, 1957 (1976).CrossRef
29.
go back to reference R. Shi, S. Zhu, R. Muhammad, T. Zhou, B. Liu, M. Mao, D. Wang, and K. Song, Degree of inversion of A/B lattice sites and microwave/millimeter wave/terahertz dielectric properties of MgAl2-x(Zn0.5Mn0.5)xO4 ceramics. J. Eur. Ceram. Soc. 43, 3324 (2023).CrossRef R. Shi, S. Zhu, R. Muhammad, T. Zhou, B. Liu, M. Mao, D. Wang, and K. Song, Degree of inversion of A/B lattice sites and microwave/millimeter wave/terahertz dielectric properties of MgAl2-x(Zn0.5Mn0.5)xO4 ceramics. J. Eur. Ceram. Soc. 43, 3324 (2023).CrossRef
30.
go back to reference W.B. White and B.A. DeAngelis, Interpretation of the vibrational spectra of spinels. Spectrochim. Acta Part Mol. Spectrosc. 23, 985 (1967).CrossRef W.B. White and B.A. DeAngelis, Interpretation of the vibrational spectra of spinels. Spectrochim. Acta Part Mol. Spectrosc. 23, 985 (1967).CrossRef
31.
go back to reference V. D’Ippolito, G.B. Andreozzi, D. Bersani, and P.P. Lottici, Raman fingerprint of chromate, aluminate and ferrite spinels. J. Raman Spectrosc. 46, 1255 (2015).CrossRef V. D’Ippolito, G.B. Andreozzi, D. Bersani, and P.P. Lottici, Raman fingerprint of chromate, aluminate and ferrite spinels. J. Raman Spectrosc. 46, 1255 (2015).CrossRef
32.
go back to reference D. Dohy, G. Lucazeau, and A. Revcolevschi, Raman spectra and valence force field of single-crystalline β Ga2O3. J. Solid State Chem. 45, 180 (1982).CrossRef D. Dohy, G. Lucazeau, and A. Revcolevschi, Raman spectra and valence force field of single-crystalline β Ga2O3. J. Solid State Chem. 45, 180 (1982).CrossRef
33.
go back to reference R. Rao, A.M. Rao, B. Xu, J. Dong, S. Sharma, and M.K. Sunkara, Blueshifted raman scattering and its correlation with the [110] growth direction in gallium oxide nanowires. J. Appl. Phys. 98, 094312 (2005).CrossRef R. Rao, A.M. Rao, B. Xu, J. Dong, S. Sharma, and M.K. Sunkara, Blueshifted raman scattering and its correlation with the [110] growth direction in gallium oxide nanowires. J. Appl. Phys. 98, 094312 (2005).CrossRef
34.
go back to reference N.A. Gribchenkova, A.V. Steblevsky, and A.S. Alikhanyan, vaporization in the Ga2O3−ZnO system by high temperature mass spectrometry. J. Chem. Thermodyn. 115, 1 (2017).CrossRef N.A. Gribchenkova, A.V. Steblevsky, and A.S. Alikhanyan, vaporization in the Ga2O3−ZnO system by high temperature mass spectrometry. J. Chem. Thermodyn. 115, 1 (2017).CrossRef
35.
go back to reference S. Liu, H. Li, R. Xiang, P. Zhang, X. Chen, Q. Wen, and H. Hu, Effect of substituting Al3+ for Ti4+on the microwave dielectric performance of Mg2Ti1-xAl4/3xO4 (00.1 ≤ x ≤ 0.09) ceramics. Ceram. Int. 47, 33064 (2021).CrossRef S. Liu, H. Li, R. Xiang, P. Zhang, X. Chen, Q. Wen, and H. Hu, Effect of substituting Al3+ for Ti4+on the microwave dielectric performance of Mg2Ti1-xAl4/3xO4 (00.1 ≤ x ≤ 0.09) ceramics. Ceram. Int. 47, 33064 (2021).CrossRef
36.
go back to reference M. Zhou, H. Chen, Y. He, G. Zhou, X. Zhang, S. Zhang, and B. Tang, Phase composition, crystal structure, and microwave dielectric properties of Nb-doped and Y-deficient yttrium aluminum garnet ceramics. J. Eur. Ceram. Soc. 42, 5705 (2022).CrossRef M. Zhou, H. Chen, Y. He, G. Zhou, X. Zhang, S. Zhang, and B. Tang, Phase composition, crystal structure, and microwave dielectric properties of Nb-doped and Y-deficient yttrium aluminum garnet ceramics. J. Eur. Ceram. Soc. 42, 5705 (2022).CrossRef
37.
go back to reference L. Zhang, H. Ren, H. Peng, H. Lin, and Q. Yang, Sintering behavior of 0.95MgTiO3-0.05CaTiO3 ceramics with high densification, high Q and enhanced mechanical properties for 5G massive MIMO technology: effect of particle gradation. Ceram. Int. 50, 4462 (2024).CrossRef L. Zhang, H. Ren, H. Peng, H. Lin, and Q. Yang, Sintering behavior of 0.95MgTiO3-0.05CaTiO3 ceramics with high densification, high Q and enhanced mechanical properties for 5G massive MIMO technology: effect of particle gradation. Ceram. Int. 50, 4462 (2024).CrossRef
38.
go back to reference K. Wakino, Recent development of dielectric resonator materials and filters in Japan. Ferroelectrics 91, 69 (1989).CrossRef K. Wakino, Recent development of dielectric resonator materials and filters in Japan. Ferroelectrics 91, 69 (1989).CrossRef
39.
go back to reference S. Wu, J. Xue, R. Wang, and J. Li, Synthesis, characterization and microwave dielectric properties of spinel MgGa2O4 ceramic materials. J. Alloys Comp. 585, 542 (2014).CrossRef S. Wu, J. Xue, R. Wang, and J. Li, Synthesis, characterization and microwave dielectric properties of spinel MgGa2O4 ceramic materials. J. Alloys Comp. 585, 542 (2014).CrossRef
40.
go back to reference X. Lu, B. Quan, K. Zheng, P. Chu, J. Wang, G. Shen, Q. Zhang, and F. Xu, Sc modification induced short-range cation ordering and high microwave dielectric performance in ZnGa2O4 spinel ceramics. J. Alloys Comp. 873, 159758 (2021).CrossRef X. Lu, B. Quan, K. Zheng, P. Chu, J. Wang, G. Shen, Q. Zhang, and F. Xu, Sc modification induced short-range cation ordering and high microwave dielectric performance in ZnGa2O4 spinel ceramics. J. Alloys Comp. 873, 159758 (2021).CrossRef
Metadata
Title
Crystal Structure, Microstructure, and Microwave Dielectric Properties of MgGa2O4 and ZnGa2O4 Ceramics Prepared by a Reaction Sintering Method
Authors
Zitao Shi
Shasha Li
Zeyu Zheng
Xiaodong Feng
Zixuan Fang
Jun Yang
Bin Tang
Publication date
27-02-2024
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 5/2024
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-024-10928-x

Other articles of this Issue 5/2024

Journal of Electronic Materials 5/2024 Go to the issue