Skip to main content
Top
Published in: Polymer Bulletin 12/2017

27-03-2017 | Original Paper

Synthesis of cellulose/silica gel polymer hybrids via in-situ hydrolysis method

Authors: Takeru Iwamura, Kenzo Akiyama, Taiki Hakozaki, Masahiro Shino, Kaoru Adachi

Published in: Polymer Bulletin | Issue 12/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Homogeneous cellulose/silica gel polymer hybrids were prepared by hydrolysis of acetyl cellulose (AcCL) in a sol–gel reaction mixture of alkoxysilane such as tetramethoxysilane (TMOS). To a mixture of AcCL and TMOS in a mixed solvent of THF and methanol (v/v, 7/3), an HCl aqueous solution was added to initiate hydrolysis and condensation of the alkoxysilane. The resulting mixture was constantly stirred for 5 h and heated at 60 °C for two weeks to allow evaporation of the solvents. Consequently, corresponding transparent and homogeneous polymer hybrids could be obtained in a range of mass ratios (AcCL/TMOS = 1/5–1/2). In the FT-IR spectra, the absorption peaks corresponding to the acetyl group decreased as the amount of 0.1 M aqueous HCl solution increased, which indicates hydrolysis of acetyl groups of AcCL, whereas the intensity of the Si–O-Si stretching vibration peak increased. The thermal properties of the obtained polymer hybrids were evaluated by TG/DTA and DSC measurements.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3470–3500CrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3470–3500CrossRef
2.
go back to reference Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Carbohydrate polymers. Carbohyd Polym 94:154–169CrossRef Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Carbohydrate polymers. Carbohyd Polym 94:154–169CrossRef
3.
go back to reference Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron x-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306CrossRef Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron x-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306CrossRef
4.
go back to reference Dutta S, Pal S (2014) Promises in direct conversion of cellulose and lignocellulosic biomass to chemicals and fuels: combined solvent-nanocatalysis approach for biorefinary. Biomass Bioeng 62:182–197CrossRef Dutta S, Pal S (2014) Promises in direct conversion of cellulose and lignocellulosic biomass to chemicals and fuels: combined solvent-nanocatalysis approach for biorefinary. Biomass Bioeng 62:182–197CrossRef
5.
go back to reference Scheützenberger MP (1865) Action de l’acide acètique anhydre sur la cellulose, l’amidon, les sucres, la mannite et ses congènères, les glucosides et certaines matières colorantes vègètales. Comptes Rendus 61:485–486 Scheützenberger MP (1865) Action de l’acide acètique anhydre sur la cellulose, l’amidon, les sucres, la mannite et ses congènères, les glucosides et certaines matières colorantes vègètales. Comptes Rendus 61:485–486
6.
go back to reference Chujo Y, Saegusa T (1992) Organic polymer hybrids with silica gel formed by means of the sol-gel method. Adv Polym Sci 100:11–29CrossRef Chujo Y, Saegusa T (1992) Organic polymer hybrids with silica gel formed by means of the sol-gel method. Adv Polym Sci 100:11–29CrossRef
7.
go back to reference Novac BM (1993) Hybrid nanocomposite materials-between inorganic glasses and organic polymers. Adv Mater 5:422–433CrossRef Novac BM (1993) Hybrid nanocomposite materials-between inorganic glasses and organic polymers. Adv Mater 5:422–433CrossRef
8.
go back to reference Schubert U, Huesing N, Lorenz A (1995) Hybrid inorganic-organic materials by sol-gel processing of organofunctional metal alkoxides. Chem Mater 7:2010–2027CrossRef Schubert U, Huesing N, Lorenz A (1995) Hybrid inorganic-organic materials by sol-gel processing of organofunctional metal alkoxides. Chem Mater 7:2010–2027CrossRef
9.
go back to reference Wen J, Wilkes GL (1996) Organic/inorganic hybrid network materials by the sol-gel approach. Chem Mater 8:1667–1681CrossRef Wen J, Wilkes GL (1996) Organic/inorganic hybrid network materials by the sol-gel approach. Chem Mater 8:1667–1681CrossRef
10.
go back to reference Tanaka K, Kozuka H (2005) Preparation of acetylcellulose/silica composites by sol-gel method and their mechanical properties. J Mater Sci 40:5199–5206CrossRef Tanaka K, Kozuka H (2005) Preparation of acetylcellulose/silica composites by sol-gel method and their mechanical properties. J Mater Sci 40:5199–5206CrossRef
11.
go back to reference Demilecamps A, Reichenauer G, Rigacci A, Budtova T (2014) Cellulose-silica composite aerogels from “one-pot” synthesis. Cellulose 21:2625–2636CrossRef Demilecamps A, Reichenauer G, Rigacci A, Budtova T (2014) Cellulose-silica composite aerogels from “one-pot” synthesis. Cellulose 21:2625–2636CrossRef
12.
go back to reference Salama A (2016) Polysaccharides/silica hybrid materials: new perspectives for sustainable raw materials. J Carbohydr Chem 35:131–149CrossRef Salama A (2016) Polysaccharides/silica hybrid materials: new perspectives for sustainable raw materials. J Carbohydr Chem 35:131–149CrossRef
13.
go back to reference Cai J, Liu S, Feng J, Kimura S, Wada M, Kuga S, Zhang L (2012) Cellulose–silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew Chem Int Ed 51:2076–2079CrossRef Cai J, Liu S, Feng J, Kimura S, Wada M, Kuga S, Zhang L (2012) Cellulose–silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew Chem Int Ed 51:2076–2079CrossRef
14.
go back to reference Chujo Y, Ihara E, Kure S, Saegusa T (1993) Synthesis of triethoxysilyl-terminated polyoxazolines and their cohydrolysis polymerization with tetraethoxysilane. Macromolecules 26:5681–5686CrossRef Chujo Y, Ihara E, Kure S, Saegusa T (1993) Synthesis of triethoxysilyl-terminated polyoxazolines and their cohydrolysis polymerization with tetraethoxysilane. Macromolecules 26:5681–5686CrossRef
15.
go back to reference Saegusa T, Chujo Y (1990) An organic/inorganic hybrid polymer. J Macromol Sci A27:1603–1612 Saegusa T, Chujo Y (1990) An organic/inorganic hybrid polymer. J Macromol Sci A27:1603–1612
16.
go back to reference Chujo Y, Ihara E, Kure S, Suzuki K, Saegusa T (1991) Block copolymer of 2-methyl-2-oxazoline with silica gel an organic-inorganic hybrid polymer. Makromol Chem Macromol Symp 42(43):303–312CrossRef Chujo Y, Ihara E, Kure S, Suzuki K, Saegusa T (1991) Block copolymer of 2-methyl-2-oxazoline with silica gel an organic-inorganic hybrid polymer. Makromol Chem Macromol Symp 42(43):303–312CrossRef
17.
go back to reference Chujo Y (1996) Organic-inorganic polymer hybrids. Polym Mater Encycl 6:4793–4798 Chujo Y (1996) Organic-inorganic polymer hybrids. Polym Mater Encycl 6:4793–4798
18.
go back to reference Saegusa T, Chujo Y (1991) Macromolecular engineering on the basis of the polymerization of 2-oxazolines. Makromol Chem Macromol Symp 51:1–10CrossRef Saegusa T, Chujo Y (1991) Macromolecular engineering on the basis of the polymerization of 2-oxazolines. Makromol Chem Macromol Symp 51:1–10CrossRef
19.
go back to reference Saegusa T, Chujo Y (1992) Organic-inorganic polymer hybrids. Makromol Chem Macromol Symp 64:1–9CrossRef Saegusa T, Chujo Y (1992) Organic-inorganic polymer hybrids. Makromol Chem Macromol Symp 64:1–9CrossRef
20.
go back to reference Tamaki R, Chujo Y (1999) Synthesis of polystyrene and silica gel polymer hybrids utilizing ionic interactions. Chem Mater 11:1719–1726CrossRef Tamaki R, Chujo Y (1999) Synthesis of polystyrene and silica gel polymer hybrids utilizing ionic interactions. Chem Mater 11:1719–1726CrossRef
21.
go back to reference Tamaki R, Samura K, Chujo Y (1998) Synthesis of polystyrene and silica gel polymer hybrids via π–π interactions. Chem Commun 10:1131–1132CrossRef Tamaki R, Samura K, Chujo Y (1998) Synthesis of polystyrene and silica gel polymer hybrids via ππ interactions. Chem Commun 10:1131–1132CrossRef
22.
go back to reference Takasaki M, Hiroki K, Iwamura T (2015) Synthesis of organic-inorganic polymer hybrids from acrylate polymer having a triphenylimidazole moiety via π–π interactions. Polym Bull 72:645–651CrossRef Takasaki M, Hiroki K, Iwamura T (2015) Synthesis of organic-inorganic polymer hybrids from acrylate polymer having a triphenylimidazole moiety via ππ interactions. Polym Bull 72:645–651CrossRef
23.
go back to reference Iwamura T, Adachi K, Chujo Y (2004) Synthesis of poly(vinyl chloride) and silica gel polymer hybrids via CH/π interaction. Polym J 11:871–877CrossRef Iwamura T, Adachi K, Chujo Y (2004) Synthesis of poly(vinyl chloride) and silica gel polymer hybrids via CH/π interaction. Polym J 11:871–877CrossRef
24.
go back to reference Iwamura T, Adachi K, Chujo Y (2009) Synthesis of organic-inorganic polymer hybrids from poly(vinyl chloride) and polyhedral oligomeric silsesquioxane via CH/π interaction. Prog Org Coat 64:124–127CrossRef Iwamura T, Adachi K, Chujo Y (2009) Synthesis of organic-inorganic polymer hybrids from poly(vinyl chloride) and polyhedral oligomeric silsesquioxane via CH/π interaction. Prog Org Coat 64:124–127CrossRef
25.
go back to reference Kumar AA, Adachi K, Chujo Y (2004) Synthesis and characterization of stereoregular poly(methyl methacrylate)-silica hybrid utilizing stereocomplex formation. J Polym Sci Part A Polym Chem 42:785–794CrossRef Kumar AA, Adachi K, Chujo Y (2004) Synthesis and characterization of stereoregular poly(methyl methacrylate)-silica hybrid utilizing stereocomplex formation. J Polym Sci Part A Polym Chem 42:785–794CrossRef
26.
go back to reference Adachi K, Kumar AA, Chujo Y (2004) Synthesis of organic-inorganic polymer hybrids controlled by diels-alder reaction. Macromolecules 37:9793–9797CrossRef Adachi K, Kumar AA, Chujo Y (2004) Synthesis of organic-inorganic polymer hybrids controlled by diels-alder reaction. Macromolecules 37:9793–9797CrossRef
27.
go back to reference Tamaki R, Chujo Y (1998) Synthesis of poly(vinyl alcohol)/silica gel polymer hybrids by in situ hydrolysis method. Appl Organomet Chem 12:55–763CrossRef Tamaki R, Chujo Y (1998) Synthesis of poly(vinyl alcohol)/silica gel polymer hybrids by in situ hydrolysis method. Appl Organomet Chem 12:55–763CrossRef
28.
go back to reference Suhas DP, Raghu AV, Jeong HM, Aminabhavi TM (2013) Graphene-loaded sodium alginate nanocomposite membranes with enhanced isopropanol dehydration performance via pervaporation technique. RSC Adv 3:17120–17130CrossRef Suhas DP, Raghu AV, Jeong HM, Aminabhavi TM (2013) Graphene-loaded sodium alginate nanocomposite membranes with enhanced isopropanol dehydration performance via pervaporation technique. RSC Adv 3:17120–17130CrossRef
29.
go back to reference Suhas DP, Aminabhavi TM, Raghu AV (2014) para-Toluene sulfonic acid treated clay loaded sodium alginate membrane for enhanced pervaporative dehydration of isopropanol. Appl Clay Sci 101:419–429CrossRef Suhas DP, Aminabhavi TM, Raghu AV (2014) para-Toluene sulfonic acid treated clay loaded sodium alginate membrane for enhanced pervaporative dehydration of isopropanol. Appl Clay Sci 101:419–429CrossRef
30.
go back to reference Suhas DP, Raghu AV, Jeong HM, Aminabhavi TM (2014) Functionalized graphene sheets embedded in chitosan nanocomposite membranes for ethanol and isopropanol dehydration via pervaporation. Ind Eng Chem Res 53:14474–14484CrossRef Suhas DP, Raghu AV, Jeong HM, Aminabhavi TM (2014) Functionalized graphene sheets embedded in chitosan nanocomposite membranes for ethanol and isopropanol dehydration via pervaporation. Ind Eng Chem Res 53:14474–14484CrossRef
Metadata
Title
Synthesis of cellulose/silica gel polymer hybrids via in-situ hydrolysis method
Authors
Takeru Iwamura
Kenzo Akiyama
Taiki Hakozaki
Masahiro Shino
Kaoru Adachi
Publication date
27-03-2017
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 12/2017
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-017-2000-8

Other articles of this Issue 12/2017

Polymer Bulletin 12/2017 Go to the issue

Premium Partners