Skip to main content
Top
Published in: Journal of Sol-Gel Science and Technology 1/2014

01-10-2014 | Original Paper

Synthesis of ZnO/Cu2S core/shell nanorods and their enhanced photoelectric performance

Authors: Keying Guo, Xuhuang Chen, Jianhua Han, Zhifeng Liu

Published in: Journal of Sol-Gel Science and Technology | Issue 1/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, two kinds of ZnO/Cu2S core/shell nanorods (NRs) have been successfully synthesized from ZnO NRs for photoelectrochemical (PEC) water splitting by a versatile hydrothermal chemical conversion method (H-ZnO/Cu2S core/shell NRs) and successive ionic layer adsorption and reaction method (S-ZnO/Cu2S core/shell NRs), respectively. The photoelectrode is composed of a core/shell structure where the core portion is ZnO NRs and the shell portion is Cu2S nanoparticles sequentially located on the surface. The ZnO NRs array provides a fast electron transport pathway due to its high electron mobility properties. The optical property of both two kinds of core/shell NRs was characterized, and enhanced absorption spectrum was discovered. Our PEC system produced very high photocurrent density and photoconversion efficiency under 1.5 AM irradiation for hydrogen generation. On the basis of a versatile chemical conversion process based on the ion-by-ion growth mechanism, H-ZnO/Cu2S core/shell NRs exhibit a much higher photocatalytic activity than S-ZnO/Cu2S core/shell NRs. The photocurrent density and photoconversion efficiency of H-ZnO/Cu2S core/shell NRs are up to 20.12 mA cm−2 at 0.85 V versus SCE and 12.81 % at 0.40 V versus SCE, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tachibana Y, Vayssieres L, Durrant JR (2012) Artificial photosynthesis for solar water-splitting. Nat Photonics 6:511–518CrossRef Tachibana Y, Vayssieres L, Durrant JR (2012) Artificial photosynthesis for solar water-splitting. Nat Photonics 6:511–518CrossRef
2.
go back to reference Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921CrossRef Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921CrossRef
3.
go back to reference Chen CC, Ma WH, Zhao JC (2010) Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem Soc Rev 39:4206–4219CrossRef Chen CC, Ma WH, Zhao JC (2010) Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem Soc Rev 39:4206–4219CrossRef
4.
go back to reference Li YB, Takata T, Cha D, Takanabe K, Minegishi T, Kubota J, Domen K (2013) Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting. Adv Mater 25:125–131CrossRef Li YB, Takata T, Cha D, Takanabe K, Minegishi T, Kubota J, Domen K (2013) Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting. Adv Mater 25:125–131CrossRef
5.
go back to reference Fujishima Akira, Honda Kenichi (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRef Fujishima Akira, Honda Kenichi (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRef
6.
go back to reference Pu YC, Wang GM, Chang KD, Ling YC, Lin YK, Fitzmorris BC, Liu CM, Lu XH, Tong YX, Zhang JZ, Hsu YJ, Li Y (2013) Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV–visible region for photoelectrochemical water splitting. Nano Lett 13:3817–3823CrossRef Pu YC, Wang GM, Chang KD, Ling YC, Lin YK, Fitzmorris BC, Liu CM, Lu XH, Tong YX, Zhang JZ, Hsu YJ, Li Y (2013) Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV–visible region for photoelectrochemical water splitting. Nano Lett 13:3817–3823CrossRef
7.
go back to reference In SC, Chen ZB, Arnold JF, Dong RK, Pratap MR, Thomas FJ, Zheng XL (2011) Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett 11:4978–4984CrossRef In SC, Chen ZB, Arnold JF, Dong RK, Pratap MR, Thomas FJ, Zheng XL (2011) Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett 11:4978–4984CrossRef
8.
go back to reference Guo KY, Liu ZF, Zhou CL, Han JH, Zhao YF, Liu ZC, Li YJ, Cui T, Wang B, Zhang J (2014) Fabrication of TiO2 nano-branched arrays/Cu2S composite structure and its photoelectric performance. Appl Catal B 154:27–35CrossRef Guo KY, Liu ZF, Zhou CL, Han JH, Zhao YF, Liu ZC, Li YJ, Cui T, Wang B, Zhang J (2014) Fabrication of TiO2 nano-branched arrays/Cu2S composite structure and its photoelectric performance. Appl Catal B 154:27–35CrossRef
9.
go back to reference Wolcott A, Smith WA, Kuyke TR, Zhao YP, Zhang JZ (2009) Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting. Adv Funct Mater 19:1849–1856CrossRef Wolcott A, Smith WA, Kuyke TR, Zhao YP, Zhang JZ (2009) Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting. Adv Funct Mater 19:1849–1856CrossRef
10.
go back to reference Sivula K, Formal FL, Grätzel M (2009) WO3–Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach. Chem Mater 21:2862–2867CrossRef Sivula K, Formal FL, Grätzel M (2009) WO3–Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach. Chem Mater 21:2862–2867CrossRef
11.
go back to reference Hong SJ, Lee S, Jang JS (2011) Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ Sci 4:1781–1787CrossRef Hong SJ, Lee S, Jang JS (2011) Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ Sci 4:1781–1787CrossRef
12.
go back to reference Weinhardt L, Blum M, Bär M (2008) Electronic surface level positions of WO3 thin films for photoelectrochemical hydrogen production. J Phys Chem C 112:3078–3082CrossRef Weinhardt L, Blum M, Bär M (2008) Electronic surface level positions of WO3 thin films for photoelectrochemical hydrogen production. J Phys Chem C 112:3078–3082CrossRef
13.
go back to reference Paracchino A, Laporte V, Sivula K (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10:456–461CrossRef Paracchino A, Laporte V, Sivula K (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10:456–461CrossRef
14.
go back to reference Tada H, Kiyonaga T, Naya SI (2009) Rational design and applications of highly efficient reaction systems photocatalyzed by noble metal nanoparticle-loaded titanium(IV) dioxide. Chem Soc Rev 38:1849–1858CrossRef Tada H, Kiyonaga T, Naya SI (2009) Rational design and applications of highly efficient reaction systems photocatalyzed by noble metal nanoparticle-loaded titanium(IV) dioxide. Chem Soc Rev 38:1849–1858CrossRef
15.
go back to reference Chung J, Myoung J, Oh J, Lim S (2010) Synthesis of a ZnS shell on the ZnO nanowire and its effect on the nanowire-based dye-sensitized solar cells. J Phys Chem C 114:21360–21365CrossRef Chung J, Myoung J, Oh J, Lim S (2010) Synthesis of a ZnS shell on the ZnO nanowire and its effect on the nanowire-based dye-sensitized solar cells. J Phys Chem C 114:21360–21365CrossRef
16.
go back to reference Beek WJE, Wienk MM, Janssen RAJ (2006) Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles. Adv Funct Mater 16:1112–1116CrossRef Beek WJE, Wienk MM, Janssen RAJ (2006) Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles. Adv Funct Mater 16:1112–1116CrossRef
17.
go back to reference Dick KA, Deppert K, Larsson MW, Martensson T, Seifert W, Wallenberg LR, Samuelson L (2004) Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nat Mater 3:380–384CrossRef Dick KA, Deppert K, Larsson MW, Martensson T, Seifert W, Wallenberg LR, Samuelson L (2004) Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nat Mater 3:380–384CrossRef
18.
go back to reference Zhang QE, Chou TP, Russo B, Jenekhe SA, Cao GZ (2008) Polydisperse aggregates of ZnO nanocrystallites: a method for energy-conversion-efficiency enhancement in dye-sensitized solar cells. Adv Funct Mater 18:1654–1660CrossRef Zhang QE, Chou TP, Russo B, Jenekhe SA, Cao GZ (2008) Polydisperse aggregates of ZnO nanocrystallites: a method for energy-conversion-efficiency enhancement in dye-sensitized solar cells. Adv Funct Mater 18:1654–1660CrossRef
19.
go back to reference Gonzalez VI, Lira CM (2009) Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy Environ Sci 2:19–34CrossRef Gonzalez VI, Lira CM (2009) Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy Environ Sci 2:19–34CrossRef
20.
go back to reference Khanchandani S, Kundu S, Patra A, Ganguli AK (2012) Shell thickness dependent photocatalyic properties of ZnO/CdS core-shell nanorods. J Phys Chem C 116:23653–23662CrossRef Khanchandani S, Kundu S, Patra A, Ganguli AK (2012) Shell thickness dependent photocatalyic properties of ZnO/CdS core-shell nanorods. J Phys Chem C 116:23653–23662CrossRef
21.
go back to reference Plank NV, Snaith HJ, Ducati C, Bendall JS, Schmidt-mende L, Welland ME (2008) A simple low temperature synthesis route for ZnO–MgO core-shell nanowires. Nanotechnology 19:1–8 Plank NV, Snaith HJ, Ducati C, Bendall JS, Schmidt-mende L, Welland ME (2008) A simple low temperature synthesis route for ZnO–MgO core-shell nanowires. Nanotechnology 19:1–8
22.
go back to reference Wang K, Chen JJ, Zhou WL, Zhang Y, Yan YF, Pern J, Mascarenhas A (2008) Direct growth of highly mismatched type II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications. Adv Mater 20:3248–3253CrossRef Wang K, Chen JJ, Zhou WL, Zhang Y, Yan YF, Pern J, Mascarenhas A (2008) Direct growth of highly mismatched type II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications. Adv Mater 20:3248–3253CrossRef
23.
go back to reference Xiu FX, Yang Z, Mandalapu LJ, Zhao DT, Liu JL, Beyermann WP (2005) High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy. Appl Phys Lett 87:1–3CrossRef Xiu FX, Yang Z, Mandalapu LJ, Zhao DT, Liu JL, Beyermann WP (2005) High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy. Appl Phys Lett 87:1–3CrossRef
24.
go back to reference Wang EJ, He T, Zhao LS, Chen YM, Cao YM, Cao YA (2011) Improved visible light photocatalytic activity of titania doped with tin and nitrogen. J Mater Chem 21:144–150CrossRef Wang EJ, He T, Zhao LS, Chen YM, Cao YM, Cao YA (2011) Improved visible light photocatalytic activity of titania doped with tin and nitrogen. J Mater Chem 21:144–150CrossRef
25.
go back to reference Liu CC, Liu ZF, Li JW, Han JH, Wang Y, Liu ZC, Ya J (2013) Cu-doping ZnO/ZnS nanorods serve as the photoanode to enhance photocurrent and conversion efficiency. Microelectron Eng 103:12–16CrossRef Liu CC, Liu ZF, Li JW, Han JH, Wang Y, Liu ZC, Ya J (2013) Cu-doping ZnO/ZnS nanorods serve as the photoanode to enhance photocurrent and conversion efficiency. Microelectron Eng 103:12–16CrossRef
26.
go back to reference Yang LL, Zhang ZQ, Yang JH, Yan YS, Sun YF, Cao J, Gao M, Wei MB, Lang JH, Liu ZF, Wang Z (2012) Effect of tube depth on the photovoltaic performance of CdS quantum dots sensitized ZnO nanotubes solar cells. J Alloy Compd 543:58–64CrossRef Yang LL, Zhang ZQ, Yang JH, Yan YS, Sun YF, Cao J, Gao M, Wei MB, Lang JH, Liu ZF, Wang Z (2012) Effect of tube depth on the photovoltaic performance of CdS quantum dots sensitized ZnO nanotubes solar cells. J Alloy Compd 543:58–64CrossRef
27.
go back to reference Vogel R, Hoyer P, Weller H (1994) Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J Phys Chem 98:3183–3188CrossRef Vogel R, Hoyer P, Weller H (1994) Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J Phys Chem 98:3183–3188CrossRef
28.
go back to reference Reiss P, Protière M, Li L (2009) Core/shell semiconductor nanocrystals. Small 2:154–168CrossRef Reiss P, Protière M, Li L (2009) Core/shell semiconductor nanocrystals. Small 2:154–168CrossRef
29.
go back to reference Liu CC, Liu ZF, Li YB, Liu ZC, Wang Y, Ya J, Gargiulo N, Caputo D (2012) Enhanced visible-light-responsive photocatalytic property of CdS and PbS sensitized ZnO nanocomposite photocatalysts. Mater Sci Eng B 177:570–574CrossRef Liu CC, Liu ZF, Li YB, Liu ZC, Wang Y, Ya J, Gargiulo N, Caputo D (2012) Enhanced visible-light-responsive photocatalytic property of CdS and PbS sensitized ZnO nanocomposite photocatalysts. Mater Sci Eng B 177:570–574CrossRef
30.
go back to reference Li YX, Hu YF, Peng SQ, Lu GX, Li SB (2009) Synthesis of CdS nanorods by an ethylenediamine assisted hydrothermal method for photocatalytic hydrogen evolution. J Phys Chem C 113:9352–9358CrossRef Li YX, Hu YF, Peng SQ, Lu GX, Li SB (2009) Synthesis of CdS nanorods by an ethylenediamine assisted hydrothermal method for photocatalytic hydrogen evolution. J Phys Chem C 113:9352–9358CrossRef
31.
go back to reference Gorai S, Ganguli D, Chaudhuri S (2004) Synthesis of 1D Cu2S with tailored morphology via single and mixed ionic surfactant templates. Mater Chem Phys 88:383–387CrossRef Gorai S, Ganguli D, Chaudhuri S (2004) Synthesis of 1D Cu2S with tailored morphology via single and mixed ionic surfactant templates. Mater Chem Phys 88:383–387CrossRef
32.
go back to reference Lai YK, Lin ZQ, Zheng DJ, Chi LF, Du RG, Lin CJ (2012) CdSe/CdS quantum dots co-sensitized TiO2 nanotubes array photoelectrode for highly efficient solar cells. Electrochim Acta 79:175–181CrossRef Lai YK, Lin ZQ, Zheng DJ, Chi LF, Du RG, Lin CJ (2012) CdSe/CdS quantum dots co-sensitized TiO2 nanotubes array photoelectrode for highly efficient solar cells. Electrochim Acta 79:175–181CrossRef
33.
go back to reference Tak Y, Hong SJ, Lee JS, Yong K (2009) Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J Mater Chem 19:5945–5951CrossRef Tak Y, Hong SJ, Lee JS, Yong K (2009) Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J Mater Chem 19:5945–5951CrossRef
34.
go back to reference Liu ZF, Ya J, Xin Y (2009) Growth of ZnO nanorods by aqueous solution method with electrodeposited ZnO seed layers. Appl Surf Sci 255:6415–6420CrossRef Liu ZF, Ya J, Xin Y (2009) Growth of ZnO nanorods by aqueous solution method with electrodeposited ZnO seed layers. Appl Surf Sci 255:6415–6420CrossRef
35.
go back to reference Zhang ZH, Wang P (2012) Optimization of photoelectrochemical water splitting performance on hierarchical TiO2 nanotube arrays. Energy Environ Sci 5:6506–6512CrossRef Zhang ZH, Wang P (2012) Optimization of photoelectrochemical water splitting performance on hierarchical TiO2 nanotube arrays. Energy Environ Sci 5:6506–6512CrossRef
Metadata
Title
Synthesis of ZnO/Cu2S core/shell nanorods and their enhanced photoelectric performance
Authors
Keying Guo
Xuhuang Chen
Jianhua Han
Zhifeng Liu
Publication date
01-10-2014
Publisher
Springer US
Published in
Journal of Sol-Gel Science and Technology / Issue 1/2014
Print ISSN: 0928-0707
Electronic ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-014-3426-1

Other articles of this Issue 1/2014

Journal of Sol-Gel Science and Technology 1/2014 Go to the issue

Premium Partners