Skip to main content
Top

2021 | OriginalPaper | Chapter

7. Systematic Metabolic Engineering of Saccharomyces cerevisiae for Efficient Utilization of Xylose

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Efficient utilization of xylose is indispensable for economic biotransformation of biomass hydrolysates into fuels and other value-added chemicals. In the past two decades, there have been many metabolic engineering efforts in developing fast xylose-fermenting recombinant Saccharomyces cerevisiae strains, which are commonly used in industrial fermentation but are naturally incapable of metabolizing xylose. In this chapter, we review systematic metabolic engineering of S. cerevisiae to improve xylose metabolism via the xylose reductase (XR)-xylitol dehydrogenase (XDH) pathway or the xylose isomerase (XI) pathway. We focus on key regulatory targets that are highly involved in xylose metabolism, including redox imbalance caused by cofactor mismatch between XR and XDH, low activity of upper pathway enzymes (e.g., XR, XDH, XI, and xylulose kinase), inefficient xylose transportation, and incompatible sensing and signaling pathway. Meanwhile, we describe the construction of a new xylose metabolism pathway, the Weimberg pathway, in S. cerevisiae to metabolize xylose in a different manner, providing an option to synthesize more useful chemicals via the tricarboxylic acid cycle.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hahn-Hagerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I., & Gorwa-Grauslund, M. F. (2007). Towards industrial pentose-fermenting yeast strains. Applied Microbiology and Biotechnology, 74(5), 937–953.CrossRef Hahn-Hagerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I., & Gorwa-Grauslund, M. F. (2007). Towards industrial pentose-fermenting yeast strains. Applied Microbiology and Biotechnology, 74(5), 937–953.CrossRef
2.
go back to reference Kim, S. R., Park, Y.-C., Jin, Y.-S., & Seo, J.-H. (2013). Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnology Advances, 31(6), 851–861.CrossRef Kim, S. R., Park, Y.-C., Jin, Y.-S., & Seo, J.-H. (2013). Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnology Advances, 31(6), 851–861.CrossRef
3.
go back to reference Aristidou, A., & Penttila, M. (2000). Metabolic engineering applications to renewable resource utilization. Current Opinion in Biotechnology, 11(2), 187–198.CrossRef Aristidou, A., & Penttila, M. (2000). Metabolic engineering applications to renewable resource utilization. Current Opinion in Biotechnology, 11(2), 187–198.CrossRef
4.
go back to reference Moysés, D. N., Reis, V. C. B., de Almeida, J. R. M., de Moraes, L. M. P., & Torres, F. A. G. (2016). Xylose fermentation by Saccharomyces cerevisiae: Challenges and prospects. International Journal of Molecular Sciences, 17(3), 207.CrossRef Moysés, D. N., Reis, V. C. B., de Almeida, J. R. M., de Moraes, L. M. P., & Torres, F. A. G. (2016). Xylose fermentation by Saccharomyces cerevisiae: Challenges and prospects. International Journal of Molecular Sciences, 17(3), 207.CrossRef
5.
go back to reference Kwak, S., & Jin, Y.-S. (2017). Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: A review and perspective. Microbial Cell Factories, 16(1), 82.CrossRef Kwak, S., & Jin, Y.-S. (2017). Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: A review and perspective. Microbial Cell Factories, 16(1), 82.CrossRef
6.
go back to reference Jin, Y.-S., Laplaza, J. M., & Jeffries, T. W. (2004). Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Applied and Environmental Microbiology, 70(11), 6816–6825.CrossRef Jin, Y.-S., Laplaza, J. M., & Jeffries, T. W. (2004). Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Applied and Environmental Microbiology, 70(11), 6816–6825.CrossRef
7.
go back to reference Zha, J., Hu, M.-L., Shen, M.-H., Li, B.-Z., Wang, J.-Y., & Yuan, Y.-J. (2012). Balance of XYL1 and XYL2 expression in different yeast chassis for improved xylose fermentation. Frontiers in Microbiology, 3, 355.CrossRef Zha, J., Hu, M.-L., Shen, M.-H., Li, B.-Z., Wang, J.-Y., & Yuan, Y.-J. (2012). Balance of XYL1 and XYL2 expression in different yeast chassis for improved xylose fermentation. Frontiers in Microbiology, 3, 355.CrossRef
8.
go back to reference Chu, B. C., & Lee, H. (2007). Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnology Advances, 25(5), 425–441.CrossRef Chu, B. C., & Lee, H. (2007). Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnology Advances, 25(5), 425–441.CrossRef
9.
go back to reference Lee, S.-H., Kodaki, T., Park, Y.-C., & Seo, J.-H. (2012). Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. Journal of Biotechnology, 158(4), 184–191.CrossRef Lee, S.-H., Kodaki, T., Park, Y.-C., & Seo, J.-H. (2012). Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. Journal of Biotechnology, 158(4), 184–191.CrossRef
10.
go back to reference Matsushika, A., Watanabe, S., Kodaki, T., Makino, K., Inoue, H., Murakami, K., Takimura, O., & Sawayama, S. (2008). Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 81(2), 243–255.CrossRef Matsushika, A., Watanabe, S., Kodaki, T., Makino, K., Inoue, H., Murakami, K., Takimura, O., & Sawayama, S. (2008). Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 81(2), 243–255.CrossRef
11.
go back to reference Roca, C., Nielsen, J., & Olsson, L. (2003). Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production. Applied and Environmental Microbiology, 69(8), 4732–4736.CrossRef Roca, C., Nielsen, J., & Olsson, L. (2003). Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production. Applied and Environmental Microbiology, 69(8), 4732–4736.CrossRef
12.
go back to reference Suga, H., Matsuda, F., Hasunuma, T., Ishii, J., & Kondo, A. (2013). Implementation of a transhydrogenase-like shunt to counter redox imbalance during xylose fermentation in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 97(4), 1669–1678.CrossRef Suga, H., Matsuda, F., Hasunuma, T., Ishii, J., & Kondo, A. (2013). Implementation of a transhydrogenase-like shunt to counter redox imbalance during xylose fermentation in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 97(4), 1669–1678.CrossRef
13.
go back to reference Zhang, G.-C., Turner, T. L., & Jin, Y.-S. (2017). Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. Journal of Industrial Microbiology & Biotechnology, 44(3), 387–395.CrossRef Zhang, G.-C., Turner, T. L., & Jin, Y.-S. (2017). Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. Journal of Industrial Microbiology & Biotechnology, 44(3), 387–395.CrossRef
14.
go back to reference Jo, J.-H., Park, Y.-C., Jin, Y.-S., & Seo, J.-H. (2017). Construction of efficient xylose-fermenting Saccharomyces cerevisiae through a synthetic isozyme system of xylose reductase from Scheffersomyces stipitis. Bioresource Technology, 241, 88–94.CrossRef Jo, J.-H., Park, Y.-C., Jin, Y.-S., & Seo, J.-H. (2017). Construction of efficient xylose-fermenting Saccharomyces cerevisiae through a synthetic isozyme system of xylose reductase from Scheffersomyces stipitis. Bioresource Technology, 241, 88–94.CrossRef
15.
go back to reference Wei, N., Xu, H., Kim, S. R., & Jin, Y.-S. (2013). Deletion of FPS1, encoding aquaglyceroporin Fps1p, improves xylose fermentation by engineered Saccharomyces cerevisiae. Applied and Environmental Microbiology, 79(10), 3193–3201.CrossRef Wei, N., Xu, H., Kim, S. R., & Jin, Y.-S. (2013). Deletion of FPS1, encoding aquaglyceroporin Fps1p, improves xylose fermentation by engineered Saccharomyces cerevisiae. Applied and Environmental Microbiology, 79(10), 3193–3201.CrossRef
16.
go back to reference Karhumaa, K., Fromanger, R., Hahn-Hägerdal, B., & Gorwa-Grauslund, M.-F. (2007). High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 73(5), 1039–1046.CrossRef Karhumaa, K., Fromanger, R., Hahn-Hägerdal, B., & Gorwa-Grauslund, M.-F. (2007). High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 73(5), 1039–1046.CrossRef
17.
go back to reference Kim, S. R., Ha, S.-J., Kong, I. I., & Jin, Y.-S. (2012). High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Metabolic Engineering, 14(4), 336–343.CrossRef Kim, S. R., Ha, S.-J., Kong, I. I., & Jin, Y.-S. (2012). High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Metabolic Engineering, 14(4), 336–343.CrossRef
18.
go back to reference Jeppsson, M., Träff, K., Johansson, B., Hahn-Hägerdal, B., & Gorwa-Grauslund, M. F. (2003). Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Research, 3(2), 167–175.CrossRef Jeppsson, M., Träff, K., Johansson, B., Hahn-Hägerdal, B., & Gorwa-Grauslund, M. F. (2003). Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Research, 3(2), 167–175.CrossRef
19.
go back to reference Zha, J., Shen, M., Hu, M., Song, H., & Yuan, Y. (2014). Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering. Journal of Industrial Microbiology & Biotechnology, 41(1), 27–39.CrossRef Zha, J., Shen, M., Hu, M., Song, H., & Yuan, Y. (2014). Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering. Journal of Industrial Microbiology & Biotechnology, 41(1), 27–39.CrossRef
20.
go back to reference Toivari, M. H., Aristidou, A., Ruohonen, L., & Penttilä, M. (2001). Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: Importance of xylulokinase (XKS1) and oxygen availability. Metabolic Engineering, 3(3), 236–249.CrossRef Toivari, M. H., Aristidou, A., Ruohonen, L., & Penttilä, M. (2001). Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: Importance of xylulokinase (XKS1) and oxygen availability. Metabolic Engineering, 3(3), 236–249.CrossRef
21.
go back to reference Qi, X., Zha, J., Liu, G.-G., Zhang, W., Li, B.-Z., & Yuan, Y.-J. (2015). Heterologous xylose isomerase pathway and evolutionary engineering improve xylose utilization in Saccharomyces cerevisiae. Frontiers in Microbiology, 6, 1165.CrossRef Qi, X., Zha, J., Liu, G.-G., Zhang, W., Li, B.-Z., & Yuan, Y.-J. (2015). Heterologous xylose isomerase pathway and evolutionary engineering improve xylose utilization in Saccharomyces cerevisiae. Frontiers in Microbiology, 6, 1165.CrossRef
22.
go back to reference Kato, H., Matsuda, F., Yamada, R., Nagata, K., Shirai, T., Hasunuma, T., & Kondo, A. (2013). Cocktail δ-integration of xylose assimilation genes for efficient ethanol production from xylose in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 116(3), 333–336.CrossRef Kato, H., Matsuda, F., Yamada, R., Nagata, K., Shirai, T., Hasunuma, T., & Kondo, A. (2013). Cocktail δ-integration of xylose assimilation genes for efficient ethanol production from xylose in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 116(3), 333–336.CrossRef
23.
go back to reference Du, J., Yuan, Y., Si, T., Lian, J., & Zhao, H. (2012). Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Research, 40(18), e142.CrossRef Du, J., Yuan, Y., Si, T., Lian, J., & Zhao, H. (2012). Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Research, 40(18), e142.CrossRef
24.
go back to reference Latimer, L. N., & Dueber, J. E. (2017). Iterative optimization of xylose catabolism in Saccharomyces cerevisiae using combinatorial expression tuning. Biotechnology and Bioengineering, 114(6), 1301–1309.CrossRef Latimer, L. N., & Dueber, J. E. (2017). Iterative optimization of xylose catabolism in Saccharomyces cerevisiae using combinatorial expression tuning. Biotechnology and Bioengineering, 114(6), 1301–1309.CrossRef
25.
go back to reference Kuyper, M., Harhangi, H. R., Stave, A. K., Winkler, A. A., Jetten, M. S. M., de Laat, W. T. A. M., den Ridder, J. J. J., den Camp, H. J. M. O., van Dijken, J. P., & Pronk, J. T. (2003). High-level functional expression of a fungal xylose isomerase: The key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Research, 4(1), 69–78.CrossRef Kuyper, M., Harhangi, H. R., Stave, A. K., Winkler, A. A., Jetten, M. S. M., de Laat, W. T. A. M., den Ridder, J. J. J., den Camp, H. J. M. O., van Dijken, J. P., & Pronk, J. T. (2003). High-level functional expression of a fungal xylose isomerase: The key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Research, 4(1), 69–78.CrossRef
26.
go back to reference Brat, D., Boles, E., & Wiedemann, B. (2009). Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 75(8), 2304–2311.CrossRef Brat, D., Boles, E., & Wiedemann, B. (2009). Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 75(8), 2304–2311.CrossRef
27.
go back to reference Ha, S.-J., Kim, S. R., Choi, J.-H., Park, M. S., & Jin, Y.-S. (2011). Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro. Applied Microbiology and Biotechnology, 92(1), 77–84.CrossRef Ha, S.-J., Kim, S. R., Choi, J.-H., Park, M. S., & Jin, Y.-S. (2011). Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro. Applied Microbiology and Biotechnology, 92(1), 77–84.CrossRef
28.
go back to reference Vilela, L. F., de Araujo, V. P. G., Paredes, R. S., Bon, E. P. S., Torres, F. A. G., Neves, B. C., & Eleutherio, E. C. A. (2015). Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain. AMB Express, 5, 16.CrossRef Vilela, L. F., de Araujo, V. P. G., Paredes, R. S., Bon, E. P. S., Torres, F. A. G., Neves, B. C., & Eleutherio, E. C. A. (2015). Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain. AMB Express, 5, 16.CrossRef
29.
go back to reference Madhavan, A., Tamalampudi, S., Ushida, K., Kanai, D., Katahira, S., Srivastava, A., Fukuda, H., Bisaria, V. S., & Kondo, A. (2009). Xylose isomerase from polycentric fungus Orpinomyces: Gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Applied Microbiology and Biotechnology, 82(6), 1067–1078.CrossRef Madhavan, A., Tamalampudi, S., Ushida, K., Kanai, D., Katahira, S., Srivastava, A., Fukuda, H., Bisaria, V. S., & Kondo, A. (2009). Xylose isomerase from polycentric fungus Orpinomyces: Gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Applied Microbiology and Biotechnology, 82(6), 1067–1078.CrossRef
30.
go back to reference Hector, R. E., Dien, B. S., Cotta, M. A., & Mertens, J. A. (2013). Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24. Biotechnology for Biofuels, 6(1), 84.CrossRef Hector, R. E., Dien, B. S., Cotta, M. A., & Mertens, J. A. (2013). Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24. Biotechnology for Biofuels, 6(1), 84.CrossRef
31.
go back to reference Katahira, S., Muramoto, N., Moriya, S., Nagura, R., Tada, N., Yasutani, N., Ohkuma, M., Onishi, T., & Tokuhiro, K. (2017). Screening and evolution of a novel protist xylose isomerase from the termite Reticulitermes speratus for efficient xylose fermentation in Saccharomyces cerevisiae. Biotechnology for Biofuels, 10(1), 203.CrossRef Katahira, S., Muramoto, N., Moriya, S., Nagura, R., Tada, N., Yasutani, N., Ohkuma, M., Onishi, T., & Tokuhiro, K. (2017). Screening and evolution of a novel protist xylose isomerase from the termite Reticulitermes speratus for efficient xylose fermentation in Saccharomyces cerevisiae. Biotechnology for Biofuels, 10(1), 203.CrossRef
32.
go back to reference Seike, T., Kobayashi, Y., Sahara, T., Ohgiya, S., Kamagata, Y., & Fujimori, K. E. (2019). Molecular evolutionary engineering of xylose isomerase to improve its catalytic activity and performance of micro-aerobic glucose/xylose co-fermentation in Saccharomyces cerevisiae. Biotechnology for Biofuels, 12(1), 139.CrossRef Seike, T., Kobayashi, Y., Sahara, T., Ohgiya, S., Kamagata, Y., & Fujimori, K. E. (2019). Molecular evolutionary engineering of xylose isomerase to improve its catalytic activity and performance of micro-aerobic glucose/xylose co-fermentation in Saccharomyces cerevisiae. Biotechnology for Biofuels, 12(1), 139.CrossRef
33.
go back to reference Aeling, K. A., Salmon, K. A., Laplaza, J. M., Li, L., Headman, J. R., Hutagalung, A. H., & Picataggio, S. (2012). Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae. Journal of Industrial Microbiology & Biotechnology, 39(11), 1597–1604.CrossRef Aeling, K. A., Salmon, K. A., Laplaza, J. M., Li, L., Headman, J. R., Hutagalung, A. H., & Picataggio, S. (2012). Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae. Journal of Industrial Microbiology & Biotechnology, 39(11), 1597–1604.CrossRef
34.
go back to reference Temer, B., dos Santos, L. V., Negri, V. A., Galhardo, J. P., Magalhães, P. H. M., José, J., Marschalk, C., Corrêa, T. L. R., Carazzolle, M. F., & Pereira, G. A. G. (2017). Conversion of an inactive xylose isomerase into a functional enzyme by co-expression of GroEL-GroES chaperonins in Saccharomyces cerevisiae. BMC Biotechnology, 17(1), 71.CrossRef Temer, B., dos Santos, L. V., Negri, V. A., Galhardo, J. P., Magalhães, P. H. M., José, J., Marschalk, C., Corrêa, T. L. R., Carazzolle, M. F., & Pereira, G. A. G. (2017). Conversion of an inactive xylose isomerase into a functional enzyme by co-expression of GroEL-GroES chaperonins in Saccharomyces cerevisiae. BMC Biotechnology, 17(1), 71.CrossRef
35.
go back to reference Demeke, M. M., Foulquié-Moreno, M. R., Dumortier, F., & Thevelein, J. M. (2015). Rapid evolution of recombinant Saccharomyces cerevisiae for xylose fermentation through formation of extra-chromosomal circular DNA. PLoS Genetics, 11(3), e1005010.CrossRef Demeke, M. M., Foulquié-Moreno, M. R., Dumortier, F., & Thevelein, J. M. (2015). Rapid evolution of recombinant Saccharomyces cerevisiae for xylose fermentation through formation of extra-chromosomal circular DNA. PLoS Genetics, 11(3), e1005010.CrossRef
36.
go back to reference Zhou, H., Cheng, J.-s., Wang, B. L., Fink, G. R., & Stephanopoulos, G. (2012). Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metabolic Engineering, 14(6), 611–622.CrossRef Zhou, H., Cheng, J.-s., Wang, B. L., Fink, G. R., & Stephanopoulos, G. (2012). Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metabolic Engineering, 14(6), 611–622.CrossRef
37.
go back to reference Hou, J., Jiao, C., Peng, B., Shen, Y., & Bao, X. (2016). Mutation of a regulator Ask10p improves xylose isomerase activity through up-regulation of molecular chaperones in Saccharomyces cerevisiae. Metabolic Engineering, 38, 241–250.CrossRef Hou, J., Jiao, C., Peng, B., Shen, Y., & Bao, X. (2016). Mutation of a regulator Ask10p improves xylose isomerase activity through up-regulation of molecular chaperones in Saccharomyces cerevisiae. Metabolic Engineering, 38, 241–250.CrossRef
38.
go back to reference Verhoeven, M. D., Lee, M., Kamoen, L., van den Broek, M., Janssen, D. B., Daran, J.-M. G., van Maris, A. J. A., & Pronk, J. T. (2017). Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis. Scientific Reports, 7(1), 46155.CrossRef Verhoeven, M. D., Lee, M., Kamoen, L., van den Broek, M., Janssen, D. B., Daran, J.-M. G., van Maris, A. J. A., & Pronk, J. T. (2017). Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis. Scientific Reports, 7(1), 46155.CrossRef
39.
go back to reference Son, H., Lee, S. M., & Kim, K. J. (2018). Crystal structure and biochemical characterization of xylose isomerase from Piromyces sp. E2. Journal of Microbiology and Biotechnology, 28(4), 571–578.CrossRef Son, H., Lee, S. M., & Kim, K. J. (2018). Crystal structure and biochemical characterization of xylose isomerase from Piromyces sp. E2. Journal of Microbiology and Biotechnology, 28(4), 571–578.CrossRef
40.
go back to reference Lee, M., Rozeboom, H. J., de Waal, P. P., de Jong, R. M., Dudek, H. M., & Janssen, D. B. (2017). Metal dependence of the xylose isomerase from Piromyces sp. E2 explored by activity profiling and protein crystallography. Biochemistry, 56(45), 5991–6005.CrossRef Lee, M., Rozeboom, H. J., de Waal, P. P., de Jong, R. M., Dudek, H. M., & Janssen, D. B. (2017). Metal dependence of the xylose isomerase from Piromyces sp. E2 explored by activity profiling and protein crystallography. Biochemistry, 56(45), 5991–6005.CrossRef
41.
go back to reference Kobayashi, Y., Sahara, T., Ohgiya, S., Kamagata, Y., & Fujimori, K. E. (2018). Systematic optimization of gene expression of pentose phosphate pathway enhances ethanol production from a glucose/xylose mixed medium in a recombinant Saccharomyces cerevisiae. AMB Express, 8(1), 139.CrossRef Kobayashi, Y., Sahara, T., Ohgiya, S., Kamagata, Y., & Fujimori, K. E. (2018). Systematic optimization of gene expression of pentose phosphate pathway enhances ethanol production from a glucose/xylose mixed medium in a recombinant Saccharomyces cerevisiae. AMB Express, 8(1), 139.CrossRef
42.
go back to reference Xu, H., Kim, S., Sorek, H., Lee, Y., Jeong, D., Kim, J., Oh, E. J., Yun, E. J., Wemmer, D. E., Kim, K. H., Kim, S. R., & Jin, Y.-S. (2016). PHO13 deletion-induced transcriptional activation prevents sedoheptulose accumulation during xylose metabolism in engineered Saccharomyces cerevisiae. Metabolic Engineering, 34, 88–96.CrossRef Xu, H., Kim, S., Sorek, H., Lee, Y., Jeong, D., Kim, J., Oh, E. J., Yun, E. J., Wemmer, D. E., Kim, K. H., Kim, S. R., & Jin, Y.-S. (2016). PHO13 deletion-induced transcriptional activation prevents sedoheptulose accumulation during xylose metabolism in engineered Saccharomyces cerevisiae. Metabolic Engineering, 34, 88–96.CrossRef
43.
go back to reference Jojima, T., Omumasaba, C. A., Inui, M., & Yukawa, H. (2010). Sugar transporters in efficient utilization of mixed sugar substrates: Current knowledge and outlook. Applied Microbiology and Biotechnology, 85(3), 471–480.CrossRef Jojima, T., Omumasaba, C. A., Inui, M., & Yukawa, H. (2010). Sugar transporters in efficient utilization of mixed sugar substrates: Current knowledge and outlook. Applied Microbiology and Biotechnology, 85(3), 471–480.CrossRef
44.
go back to reference Wieczorke, R., Krampe, S., Weierstall, T., Freidel, K., Hollenberg, C. P., & Boles, E. (1999). Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Letters, 464(3), 123–128.CrossRef Wieczorke, R., Krampe, S., Weierstall, T., Freidel, K., Hollenberg, C. P., & Boles, E. (1999). Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Letters, 464(3), 123–128.CrossRef
45.
go back to reference Young, E. M., Tong, A., Bui, H., Spofford, C., & Alper, H. S. (2014). Rewiring yeast sugar transporter preference through modifying a conserved protein motif. Proceedings of the National Academy of Sciences, 111(1), 131–136.CrossRef Young, E. M., Tong, A., Bui, H., Spofford, C., & Alper, H. S. (2014). Rewiring yeast sugar transporter preference through modifying a conserved protein motif. Proceedings of the National Academy of Sciences, 111(1), 131–136.CrossRef
46.
go back to reference Farwick, A., Bruder, S., Schadeweg, V., Oreb, M., & Boles, E. (2014). Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proceedings of the National Academy of Sciences, 111(14), 5159–5164.CrossRef Farwick, A., Bruder, S., Schadeweg, V., Oreb, M., & Boles, E. (2014). Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proceedings of the National Academy of Sciences, 111(14), 5159–5164.CrossRef
47.
go back to reference Hamacher, T., Becker, J., Gárdonyi, M., Hahn-Hägerdal, B., & Boles, E. (2002). Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology, 148(9), 2783–2788.CrossRef Hamacher, T., Becker, J., Gárdonyi, M., Hahn-Hägerdal, B., & Boles, E. (2002). Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology, 148(9), 2783–2788.CrossRef
48.
go back to reference Young, E., Poucher, A., Comer, A., Bailey, A., & Alper, H. (2011). Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host. Applied and Environmental Microbiology, 77(10), 3311–3319.CrossRef Young, E., Poucher, A., Comer, A., Bailey, A., & Alper, H. (2011). Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host. Applied and Environmental Microbiology, 77(10), 3311–3319.CrossRef
49.
go back to reference Shin, H. Y., Nijland, J. G., de Waal, P. P., de Jong, R. M., Klaassen, P., & Driessen, A. J. M. (2015). An engineered cryptic Hxt11 sugar transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae. Biotechnology for Biofuels, 8, 176.CrossRef Shin, H. Y., Nijland, J. G., de Waal, P. P., de Jong, R. M., Klaassen, P., & Driessen, A. J. M. (2015). An engineered cryptic Hxt11 sugar transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae. Biotechnology for Biofuels, 8, 176.CrossRef
50.
go back to reference Nijland, J. G., Shin, H. Y., de Jong, R. M., de Waal, P. P., Klaassen, P., & Driessen, A. J. (2014). Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae. Biotechnology for Biofuels, 7(1), 168.CrossRef Nijland, J. G., Shin, H. Y., de Jong, R. M., de Waal, P. P., Klaassen, P., & Driessen, A. J. (2014). Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae. Biotechnology for Biofuels, 7(1), 168.CrossRef
51.
go back to reference Reider Apel, A., Ouellet, M., Szmidt-Middleton, H., Keasling, J. D., & Mukhopadhyay, A. (2016). Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae. Scientific Reports, 6, 19512.CrossRef Reider Apel, A., Ouellet, M., Szmidt-Middleton, H., Keasling, J. D., & Mukhopadhyay, A. (2016). Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae. Scientific Reports, 6, 19512.CrossRef
52.
go back to reference Nijland, J. G., Shin, H. Y., de Waal, P. P., Klaassen, P., & Driessen, A. J. M. (2018). Increased xylose affinity of Hxt2 through gene shuffling of hexose transporters in Saccharomyces cerevisiae. Journal of Applied Microbiology, 124(2), 503–510.CrossRef Nijland, J. G., Shin, H. Y., de Waal, P. P., Klaassen, P., & Driessen, A. J. M. (2018). Increased xylose affinity of Hxt2 through gene shuffling of hexose transporters in Saccharomyces cerevisiae. Journal of Applied Microbiology, 124(2), 503–510.CrossRef
53.
go back to reference de Sales, B. B., Scheid, B., Gonçalves, D. L., Knychala, M. M., Matsushika, A., Bon, E. P. S., & Stambuk, B. U. (2015). Cloning novel sugar transporters from Scheffersomyces (Pichia) stipitis allowing D-xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnology Letters, 37(10), 1973–1982.CrossRef de Sales, B. B., Scheid, B., Gonçalves, D. L., Knychala, M. M., Matsushika, A., Bon, E. P. S., & Stambuk, B. U. (2015). Cloning novel sugar transporters from Scheffersomyces (Pichia) stipitis allowing D-xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnology Letters, 37(10), 1973–1982.CrossRef
54.
go back to reference Wang, C., Shen, Y., Hou, J., Suo, F., & Bao, X. (2013). An assay for functional xylose transporters in Saccharomyces cerevisiae. Analytical Biochemistry, 442(2), 241–248.CrossRef Wang, C., Shen, Y., Hou, J., Suo, F., & Bao, X. (2013). An assay for functional xylose transporters in Saccharomyces cerevisiae. Analytical Biochemistry, 442(2), 241–248.CrossRef
55.
go back to reference Knoshaug, E. P., Vidgren, V., Magalhaes, F., Jarvis, E. E., Franden, M. A., Zhang, M., & Singh, A. (2015). Novel transporters from Kluyveromyces marxianus and Pichia guilliermondii expressed in Saccharomyces cerevisiae enable growth on L-arabinose and D-xylose. Yeast, 32(10), 615–628.CrossRef Knoshaug, E. P., Vidgren, V., Magalhaes, F., Jarvis, E. E., Franden, M. A., Zhang, M., & Singh, A. (2015). Novel transporters from Kluyveromyces marxianus and Pichia guilliermondii expressed in Saccharomyces cerevisiae enable growth on L-arabinose and D-xylose. Yeast, 32(10), 615–628.CrossRef
56.
go back to reference Kim, H., Lee, H.-S., Park, H., Lee, D.-H., Boles, E., Chung, D., & Park, Y.-C. (2017). Enhanced production of xylitol from xylose by expression of Bacillus subtilis arabinose: H+ symporter and Scheffersomyces stipitis xylose reductase in recombinant Saccharomyces cerevisiae. Enzyme and Microbial Technology, 107, 7–14.CrossRef Kim, H., Lee, H.-S., Park, H., Lee, D.-H., Boles, E., Chung, D., & Park, Y.-C. (2017). Enhanced production of xylitol from xylose by expression of Bacillus subtilis arabinose: H+ symporter and Scheffersomyces stipitis xylose reductase in recombinant Saccharomyces cerevisiae. Enzyme and Microbial Technology, 107, 7–14.CrossRef
57.
go back to reference Sharma, N. K., Behera, S., Arora, R., Kumar, S., & Sani, R. K. (2018). Xylose transport in yeast for lignocellulosic ethanol production: Current status. Journal of Bioscience and Bioengineering, 125(3), 259–267.CrossRef Sharma, N. K., Behera, S., Arora, R., Kumar, S., & Sani, R. K. (2018). Xylose transport in yeast for lignocellulosic ethanol production: Current status. Journal of Bioscience and Bioengineering, 125(3), 259–267.CrossRef
58.
go back to reference Nijland, J. G., Shin, H. Y., Boender, L. G. M., de Waal, P. P., Klaassen, P., & Driessen, A. J. M. (2017). Improved xylose metabolism by a CYC8 mutant of Saccharomyces cerevisiae. Applied and Environmental Microbiology, 83(11), e00095–e00017.CrossRef Nijland, J. G., Shin, H. Y., Boender, L. G. M., de Waal, P. P., Klaassen, P., & Driessen, A. J. M. (2017). Improved xylose metabolism by a CYC8 mutant of Saccharomyces cerevisiae. Applied and Environmental Microbiology, 83(11), e00095–e00017.CrossRef
59.
go back to reference Zha, J., Li, B.-Z., Shen, M.-H., Hu, M.-L., Song, H., & Yuan, Y.-J. (2013). Optimization of CDT-1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae. PLoS One, 8(7), e68317.CrossRef Zha, J., Li, B.-Z., Shen, M.-H., Hu, M.-L., Song, H., & Yuan, Y.-J. (2013). Optimization of CDT-1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae. PLoS One, 8(7), e68317.CrossRef
60.
go back to reference Ha, S.-J., Galazka, J. M., Rin Kim, S., Choi, J.-H., Yang, X., Seo, J.-H., Louise Glass, N., Cate, J. H. D., & Jin, Y.-S. (2011). Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proceedings of the National Academy of Sciences, 108(2), 504–509.CrossRef Ha, S.-J., Galazka, J. M., Rin Kim, S., Choi, J.-H., Yang, X., Seo, J.-H., Louise Glass, N., Cate, J. H. D., & Jin, Y.-S. (2011). Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proceedings of the National Academy of Sciences, 108(2), 504–509.CrossRef
61.
go back to reference Sato, T. K., Tremaine, M., Parreiras, L. S., Hebert, A. S., Myers, K. S., Higbee, A. J., Sardi, M., McIlwain, S. J., Ong, I. M., Breuer, R. J., Avanasi Narasimhan, R., McGee, M. A., Dickinson, Q., La Reau, A., Xie, D., Tian, M., Reed, J. L., Zhang, Y., Coon, J. J., Hittinger, C. T., Gasch, A. P., & Landick, R. (2016). Directed evolution reveals unexpected epistatic interactions that alter metabolic regulation and enable anaerobic xylose use by Saccharomyces cerevisiae. PLoS Genetics, 12(10), e1006372.CrossRef Sato, T. K., Tremaine, M., Parreiras, L. S., Hebert, A. S., Myers, K. S., Higbee, A. J., Sardi, M., McIlwain, S. J., Ong, I. M., Breuer, R. J., Avanasi Narasimhan, R., McGee, M. A., Dickinson, Q., La Reau, A., Xie, D., Tian, M., Reed, J. L., Zhang, Y., Coon, J. J., Hittinger, C. T., Gasch, A. P., & Landick, R. (2016). Directed evolution reveals unexpected epistatic interactions that alter metabolic regulation and enable anaerobic xylose use by Saccharomyces cerevisiae. PLoS Genetics, 12(10), e1006372.CrossRef
62.
go back to reference Osiro, K. O., Borgström, C., Brink, D. P., Fjölnisdóttir, B. L., & Gorwa-Grauslund, M. F. (2019). Exploring the xylose paradox in Saccharomyces cerevisiae through in vivo sugar signalomics of targeted deletants. Microbial Cell Factories, 18(1), 88.CrossRef Osiro, K. O., Borgström, C., Brink, D. P., Fjölnisdóttir, B. L., & Gorwa-Grauslund, M. F. (2019). Exploring the xylose paradox in Saccharomyces cerevisiae through in vivo sugar signalomics of targeted deletants. Microbial Cell Factories, 18(1), 88.CrossRef
63.
go back to reference dos Santos, L. V., Carazzolle, M. F., Nagamatsu, S. T., Sampaio, N. M. V., Almeida, L. D., Pirolla, R. A. S., Borelli, G., Corrêa, T. L. R., Argueso, J. L., & Pereira, G. A. G. (2016). Unraveling the genetic basis of xylose consumption in engineered Saccharomyces cerevisiae strains. Scientific Reports, 6(1), 38676.CrossRef dos Santos, L. V., Carazzolle, M. F., Nagamatsu, S. T., Sampaio, N. M. V., Almeida, L. D., Pirolla, R. A. S., Borelli, G., Corrêa, T. L. R., Argueso, J. L., & Pereira, G. A. G. (2016). Unraveling the genetic basis of xylose consumption in engineered Saccharomyces cerevisiae strains. Scientific Reports, 6(1), 38676.CrossRef
64.
go back to reference Tran Nguyen Hoang, P., Ko, J. K., Gong, G., Um, Y., & Lee, S.-M. (2018). Genomic and phenotypic characterization of a refactored xylose-utilizing Saccharomyces cerevisiae strain for lignocellulosic biofuel production. Biotechnology for Biofuels, 11(1), 268.CrossRef Tran Nguyen Hoang, P., Ko, J. K., Gong, G., Um, Y., & Lee, S.-M. (2018). Genomic and phenotypic characterization of a refactored xylose-utilizing Saccharomyces cerevisiae strain for lignocellulosic biofuel production. Biotechnology for Biofuels, 11(1), 268.CrossRef
65.
go back to reference Shen, Y., Hou, J., & Bao, X. (2013). Enhanced xylose fermentation capacity related to an altered glucose sensing and repression network in a recombinant Saccharomyces cerevisiae. Bioengineered, 4(6), 435–437.CrossRef Shen, Y., Hou, J., & Bao, X. (2013). Enhanced xylose fermentation capacity related to an altered glucose sensing and repression network in a recombinant Saccharomyces cerevisiae. Bioengineered, 4(6), 435–437.CrossRef
66.
go back to reference Bergdahl, B., Sandström, A. G., Borgström, C., Boonyawan, T., van Niel, E. W. J., & Gorwa-Grauslund, M. F. (2013). Engineering yeast hexokinase 2 for improved tolerance toward xylose-induced inactivation. PLoS One, 8(9), e75055.CrossRef Bergdahl, B., Sandström, A. G., Borgström, C., Boonyawan, T., van Niel, E. W. J., & Gorwa-Grauslund, M. F. (2013). Engineering yeast hexokinase 2 for improved tolerance toward xylose-induced inactivation. PLoS One, 8(9), e75055.CrossRef
67.
go back to reference Matsushika, A., Nagashima, A., Goshima, T., & Hoshino, T. (2013). Fermentation of xylose causes inefficient metabolic state due to carbon/energy starvation and reduced glycolytic flux in recombinant industrial Saccharomyces cerevisiae. PLoS One, 8(7), e69005.CrossRef Matsushika, A., Nagashima, A., Goshima, T., & Hoshino, T. (2013). Fermentation of xylose causes inefficient metabolic state due to carbon/energy starvation and reduced glycolytic flux in recombinant industrial Saccharomyces cerevisiae. PLoS One, 8(7), e69005.CrossRef
68.
go back to reference Feng, X., & Zhao, H. (2013). Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis. Microbial Cell Factories, 12, 114.CrossRef Feng, X., & Zhao, H. (2013). Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis. Microbial Cell Factories, 12, 114.CrossRef
69.
go back to reference Matsushika, A., Goshima, T., & Hoshino, T. (2014). Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose. Microbial Cell Factories, 13, 16.CrossRef Matsushika, A., Goshima, T., & Hoshino, T. (2014). Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose. Microbial Cell Factories, 13, 16.CrossRef
70.
go back to reference Feng, X., & Zhao, H. (2013). Investigating host dependence of xylose utilization in recombinant Saccharomyces cerevisiae strains using RNA-seq analysis. Biotechnology for Biofuels, 6(1), 96.MathSciNetCrossRef Feng, X., & Zhao, H. (2013). Investigating host dependence of xylose utilization in recombinant Saccharomyces cerevisiae strains using RNA-seq analysis. Biotechnology for Biofuels, 6(1), 96.MathSciNetCrossRef
71.
go back to reference Weimberg, R. (1961). Pentose oxidation by Pseudomonas fragi. The Journal of Biological Chemistry, 236(3), 629–635.CrossRef Weimberg, R. (1961). Pentose oxidation by Pseudomonas fragi. The Journal of Biological Chemistry, 236(3), 629–635.CrossRef
72.
go back to reference Tai, Y. S., Xiong, M., Jambunathan, P., Wang, J., Wang, J., Stapleton, C., & Zhang, K. (2016). Engineering nonphosphorylative metabolism to generate lignocellulose-derived products. Nature Chemical Biology, 12(4), 247–253.CrossRef Tai, Y. S., Xiong, M., Jambunathan, P., Wang, J., Wang, J., Stapleton, C., & Zhang, K. (2016). Engineering nonphosphorylative metabolism to generate lignocellulose-derived products. Nature Chemical Biology, 12(4), 247–253.CrossRef
73.
go back to reference Bai, W., Tai, Y.-S., Wang, J., Wang, J., Jambunathan, P., Fox, K. J., & Zhang, K. (2016). Engineering nonphosphorylative metabolism to synthesize mesaconate from lignocellulosic sugars in Escherichia coli. Metabolic Engineering, 38, 285–292.CrossRef Bai, W., Tai, Y.-S., Wang, J., Wang, J., Jambunathan, P., Fox, K. J., & Zhang, K. (2016). Engineering nonphosphorylative metabolism to synthesize mesaconate from lignocellulosic sugars in Escherichia coli. Metabolic Engineering, 38, 285–292.CrossRef
74.
go back to reference Wasserstrom, L., Portugal-Nunes, D., Almqvist, H., Sandström, A. G., Lidén, G., & Gorwa-Grauslund, M. F. (2018). Exploring D-xylose oxidation in Saccharomyces cerevisiae through the Weimberg pathway. AMB Express, 8(1), 33.CrossRef Wasserstrom, L., Portugal-Nunes, D., Almqvist, H., Sandström, A. G., Lidén, G., & Gorwa-Grauslund, M. F. (2018). Exploring D-xylose oxidation in Saccharomyces cerevisiae through the Weimberg pathway. AMB Express, 8(1), 33.CrossRef
75.
go back to reference Borgström, C., Wasserstrom, L., Almqvist, H., Broberg, K., Klein, B., Noack, S., Lidén, G., & Gorwa-Grauslund, M. F. (2019). Identification of modifications procuring growth on xylose in recombinant Saccharomyces cerevisiae strains carrying the Weimberg pathway. Metabolic Engineering, 55, 1–11.CrossRef Borgström, C., Wasserstrom, L., Almqvist, H., Broberg, K., Klein, B., Noack, S., Lidén, G., & Gorwa-Grauslund, M. F. (2019). Identification of modifications procuring growth on xylose in recombinant Saccharomyces cerevisiae strains carrying the Weimberg pathway. Metabolic Engineering, 55, 1–11.CrossRef
76.
go back to reference Kwak, S., Jo, J. H., Yun, E. J., Jin, Y.-S., & Seo, J.-H. (2019). Production of biofuels and chemicals from xylose using native and engineered yeast strains. Biotechnology Advances, 37(2), 271–283.CrossRef Kwak, S., Jo, J. H., Yun, E. J., Jin, Y.-S., & Seo, J.-H. (2019). Production of biofuels and chemicals from xylose using native and engineered yeast strains. Biotechnology Advances, 37(2), 271–283.CrossRef
77.
go back to reference Parreiras, L. S., Breuer, R. J., Avanasi Narasimhan, R., Higbee, A. J., La Reau, A., Tremaine, M., Qin, L., Willis, L. B., Bice, B. D., Bonfert, B. L., Pinhancos, R. C., Balloon, A. J., Uppugundla, N., Liu, T., Li, C., Tanjore, D., Ong, I. M., Li, H., Pohlmann, E. L., Serate, J., Withers, S. T., Simmons, B. A., Hodge, D. B., Westphall, M. S., Coon, J. J., Dale, B. E., Balan, V., Keating, D. H., Zhang, Y., Landick, R., Gasch, A. P., & Sato, T. K. (2014). Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover. PLoS One, 9(9), e107499.CrossRef Parreiras, L. S., Breuer, R. J., Avanasi Narasimhan, R., Higbee, A. J., La Reau, A., Tremaine, M., Qin, L., Willis, L. B., Bice, B. D., Bonfert, B. L., Pinhancos, R. C., Balloon, A. J., Uppugundla, N., Liu, T., Li, C., Tanjore, D., Ong, I. M., Li, H., Pohlmann, E. L., Serate, J., Withers, S. T., Simmons, B. A., Hodge, D. B., Westphall, M. S., Coon, J. J., Dale, B. E., Balan, V., Keating, D. H., Zhang, Y., Landick, R., Gasch, A. P., & Sato, T. K. (2014). Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover. PLoS One, 9(9), e107499.CrossRef
78.
go back to reference Demeke, M. M., Dietz, H., Li, Y., Foulquié-Moreno, M. R., Mutturi, S., Deprez, S., Den Abt, T., Bonini, B. M., Liden, G., Dumortier, F., Verplaetse, A., Boles, E., & Thevelein, J. M. (2013). Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnology for Biofuels, 6(1), 89.CrossRef Demeke, M. M., Dietz, H., Li, Y., Foulquié-Moreno, M. R., Mutturi, S., Deprez, S., Den Abt, T., Bonini, B. M., Liden, G., Dumortier, F., Verplaetse, A., Boles, E., & Thevelein, J. M. (2013). Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnology for Biofuels, 6(1), 89.CrossRef
Metadata
Title
Systematic Metabolic Engineering of Saccharomyces cerevisiae for Efficient Utilization of Xylose
Authors
Jing Han
Guoli Gong
Xia Wu
Jian Zha
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-65584-6_7