Skip to main content

2021 | OriginalPaper | Buchkapitel

7. Systematic Metabolic Engineering of Saccharomyces cerevisiae for Efficient Utilization of Xylose

verfasst von : Jing Han, Guoli Gong, Xia Wu, Jian Zha

Erschienen in: Emerging Technologies for Biorefineries, Biofuels, and Value-Added Commodities

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Efficient utilization of xylose is indispensable for economic biotransformation of biomass hydrolysates into fuels and other value-added chemicals. In the past two decades, there have been many metabolic engineering efforts in developing fast xylose-fermenting recombinant Saccharomyces cerevisiae strains, which are commonly used in industrial fermentation but are naturally incapable of metabolizing xylose. In this chapter, we review systematic metabolic engineering of S. cerevisiae to improve xylose metabolism via the xylose reductase (XR)-xylitol dehydrogenase (XDH) pathway or the xylose isomerase (XI) pathway. We focus on key regulatory targets that are highly involved in xylose metabolism, including redox imbalance caused by cofactor mismatch between XR and XDH, low activity of upper pathway enzymes (e.g., XR, XDH, XI, and xylulose kinase), inefficient xylose transportation, and incompatible sensing and signaling pathway. Meanwhile, we describe the construction of a new xylose metabolism pathway, the Weimberg pathway, in S. cerevisiae to metabolize xylose in a different manner, providing an option to synthesize more useful chemicals via the tricarboxylic acid cycle.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hahn-Hagerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I., & Gorwa-Grauslund, M. F. (2007). Towards industrial pentose-fermenting yeast strains. Applied Microbiology and Biotechnology, 74(5), 937–953.CrossRef Hahn-Hagerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I., & Gorwa-Grauslund, M. F. (2007). Towards industrial pentose-fermenting yeast strains. Applied Microbiology and Biotechnology, 74(5), 937–953.CrossRef
2.
Zurück zum Zitat Kim, S. R., Park, Y.-C., Jin, Y.-S., & Seo, J.-H. (2013). Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnology Advances, 31(6), 851–861.CrossRef Kim, S. R., Park, Y.-C., Jin, Y.-S., & Seo, J.-H. (2013). Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnology Advances, 31(6), 851–861.CrossRef
3.
Zurück zum Zitat Aristidou, A., & Penttila, M. (2000). Metabolic engineering applications to renewable resource utilization. Current Opinion in Biotechnology, 11(2), 187–198.CrossRef Aristidou, A., & Penttila, M. (2000). Metabolic engineering applications to renewable resource utilization. Current Opinion in Biotechnology, 11(2), 187–198.CrossRef
4.
Zurück zum Zitat Moysés, D. N., Reis, V. C. B., de Almeida, J. R. M., de Moraes, L. M. P., & Torres, F. A. G. (2016). Xylose fermentation by Saccharomyces cerevisiae: Challenges and prospects. International Journal of Molecular Sciences, 17(3), 207.CrossRef Moysés, D. N., Reis, V. C. B., de Almeida, J. R. M., de Moraes, L. M. P., & Torres, F. A. G. (2016). Xylose fermentation by Saccharomyces cerevisiae: Challenges and prospects. International Journal of Molecular Sciences, 17(3), 207.CrossRef
5.
Zurück zum Zitat Kwak, S., & Jin, Y.-S. (2017). Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: A review and perspective. Microbial Cell Factories, 16(1), 82.CrossRef Kwak, S., & Jin, Y.-S. (2017). Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: A review and perspective. Microbial Cell Factories, 16(1), 82.CrossRef
6.
Zurück zum Zitat Jin, Y.-S., Laplaza, J. M., & Jeffries, T. W. (2004). Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Applied and Environmental Microbiology, 70(11), 6816–6825.CrossRef Jin, Y.-S., Laplaza, J. M., & Jeffries, T. W. (2004). Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Applied and Environmental Microbiology, 70(11), 6816–6825.CrossRef
7.
Zurück zum Zitat Zha, J., Hu, M.-L., Shen, M.-H., Li, B.-Z., Wang, J.-Y., & Yuan, Y.-J. (2012). Balance of XYL1 and XYL2 expression in different yeast chassis for improved xylose fermentation. Frontiers in Microbiology, 3, 355.CrossRef Zha, J., Hu, M.-L., Shen, M.-H., Li, B.-Z., Wang, J.-Y., & Yuan, Y.-J. (2012). Balance of XYL1 and XYL2 expression in different yeast chassis for improved xylose fermentation. Frontiers in Microbiology, 3, 355.CrossRef
8.
Zurück zum Zitat Chu, B. C., & Lee, H. (2007). Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnology Advances, 25(5), 425–441.CrossRef Chu, B. C., & Lee, H. (2007). Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnology Advances, 25(5), 425–441.CrossRef
9.
Zurück zum Zitat Lee, S.-H., Kodaki, T., Park, Y.-C., & Seo, J.-H. (2012). Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. Journal of Biotechnology, 158(4), 184–191.CrossRef Lee, S.-H., Kodaki, T., Park, Y.-C., & Seo, J.-H. (2012). Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. Journal of Biotechnology, 158(4), 184–191.CrossRef
10.
Zurück zum Zitat Matsushika, A., Watanabe, S., Kodaki, T., Makino, K., Inoue, H., Murakami, K., Takimura, O., & Sawayama, S. (2008). Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 81(2), 243–255.CrossRef Matsushika, A., Watanabe, S., Kodaki, T., Makino, K., Inoue, H., Murakami, K., Takimura, O., & Sawayama, S. (2008). Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 81(2), 243–255.CrossRef
11.
Zurück zum Zitat Roca, C., Nielsen, J., & Olsson, L. (2003). Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production. Applied and Environmental Microbiology, 69(8), 4732–4736.CrossRef Roca, C., Nielsen, J., & Olsson, L. (2003). Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production. Applied and Environmental Microbiology, 69(8), 4732–4736.CrossRef
12.
Zurück zum Zitat Suga, H., Matsuda, F., Hasunuma, T., Ishii, J., & Kondo, A. (2013). Implementation of a transhydrogenase-like shunt to counter redox imbalance during xylose fermentation in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 97(4), 1669–1678.CrossRef Suga, H., Matsuda, F., Hasunuma, T., Ishii, J., & Kondo, A. (2013). Implementation of a transhydrogenase-like shunt to counter redox imbalance during xylose fermentation in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 97(4), 1669–1678.CrossRef
13.
Zurück zum Zitat Zhang, G.-C., Turner, T. L., & Jin, Y.-S. (2017). Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. Journal of Industrial Microbiology & Biotechnology, 44(3), 387–395.CrossRef Zhang, G.-C., Turner, T. L., & Jin, Y.-S. (2017). Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. Journal of Industrial Microbiology & Biotechnology, 44(3), 387–395.CrossRef
14.
Zurück zum Zitat Jo, J.-H., Park, Y.-C., Jin, Y.-S., & Seo, J.-H. (2017). Construction of efficient xylose-fermenting Saccharomyces cerevisiae through a synthetic isozyme system of xylose reductase from Scheffersomyces stipitis. Bioresource Technology, 241, 88–94.CrossRef Jo, J.-H., Park, Y.-C., Jin, Y.-S., & Seo, J.-H. (2017). Construction of efficient xylose-fermenting Saccharomyces cerevisiae through a synthetic isozyme system of xylose reductase from Scheffersomyces stipitis. Bioresource Technology, 241, 88–94.CrossRef
15.
Zurück zum Zitat Wei, N., Xu, H., Kim, S. R., & Jin, Y.-S. (2013). Deletion of FPS1, encoding aquaglyceroporin Fps1p, improves xylose fermentation by engineered Saccharomyces cerevisiae. Applied and Environmental Microbiology, 79(10), 3193–3201.CrossRef Wei, N., Xu, H., Kim, S. R., & Jin, Y.-S. (2013). Deletion of FPS1, encoding aquaglyceroporin Fps1p, improves xylose fermentation by engineered Saccharomyces cerevisiae. Applied and Environmental Microbiology, 79(10), 3193–3201.CrossRef
16.
Zurück zum Zitat Karhumaa, K., Fromanger, R., Hahn-Hägerdal, B., & Gorwa-Grauslund, M.-F. (2007). High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 73(5), 1039–1046.CrossRef Karhumaa, K., Fromanger, R., Hahn-Hägerdal, B., & Gorwa-Grauslund, M.-F. (2007). High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 73(5), 1039–1046.CrossRef
17.
Zurück zum Zitat Kim, S. R., Ha, S.-J., Kong, I. I., & Jin, Y.-S. (2012). High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Metabolic Engineering, 14(4), 336–343.CrossRef Kim, S. R., Ha, S.-J., Kong, I. I., & Jin, Y.-S. (2012). High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Metabolic Engineering, 14(4), 336–343.CrossRef
18.
Zurück zum Zitat Jeppsson, M., Träff, K., Johansson, B., Hahn-Hägerdal, B., & Gorwa-Grauslund, M. F. (2003). Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Research, 3(2), 167–175.CrossRef Jeppsson, M., Träff, K., Johansson, B., Hahn-Hägerdal, B., & Gorwa-Grauslund, M. F. (2003). Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Research, 3(2), 167–175.CrossRef
19.
Zurück zum Zitat Zha, J., Shen, M., Hu, M., Song, H., & Yuan, Y. (2014). Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering. Journal of Industrial Microbiology & Biotechnology, 41(1), 27–39.CrossRef Zha, J., Shen, M., Hu, M., Song, H., & Yuan, Y. (2014). Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering. Journal of Industrial Microbiology & Biotechnology, 41(1), 27–39.CrossRef
20.
Zurück zum Zitat Toivari, M. H., Aristidou, A., Ruohonen, L., & Penttilä, M. (2001). Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: Importance of xylulokinase (XKS1) and oxygen availability. Metabolic Engineering, 3(3), 236–249.CrossRef Toivari, M. H., Aristidou, A., Ruohonen, L., & Penttilä, M. (2001). Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: Importance of xylulokinase (XKS1) and oxygen availability. Metabolic Engineering, 3(3), 236–249.CrossRef
21.
Zurück zum Zitat Qi, X., Zha, J., Liu, G.-G., Zhang, W., Li, B.-Z., & Yuan, Y.-J. (2015). Heterologous xylose isomerase pathway and evolutionary engineering improve xylose utilization in Saccharomyces cerevisiae. Frontiers in Microbiology, 6, 1165.CrossRef Qi, X., Zha, J., Liu, G.-G., Zhang, W., Li, B.-Z., & Yuan, Y.-J. (2015). Heterologous xylose isomerase pathway and evolutionary engineering improve xylose utilization in Saccharomyces cerevisiae. Frontiers in Microbiology, 6, 1165.CrossRef
22.
Zurück zum Zitat Kato, H., Matsuda, F., Yamada, R., Nagata, K., Shirai, T., Hasunuma, T., & Kondo, A. (2013). Cocktail δ-integration of xylose assimilation genes for efficient ethanol production from xylose in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 116(3), 333–336.CrossRef Kato, H., Matsuda, F., Yamada, R., Nagata, K., Shirai, T., Hasunuma, T., & Kondo, A. (2013). Cocktail δ-integration of xylose assimilation genes for efficient ethanol production from xylose in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 116(3), 333–336.CrossRef
23.
Zurück zum Zitat Du, J., Yuan, Y., Si, T., Lian, J., & Zhao, H. (2012). Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Research, 40(18), e142.CrossRef Du, J., Yuan, Y., Si, T., Lian, J., & Zhao, H. (2012). Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Research, 40(18), e142.CrossRef
24.
Zurück zum Zitat Latimer, L. N., & Dueber, J. E. (2017). Iterative optimization of xylose catabolism in Saccharomyces cerevisiae using combinatorial expression tuning. Biotechnology and Bioengineering, 114(6), 1301–1309.CrossRef Latimer, L. N., & Dueber, J. E. (2017). Iterative optimization of xylose catabolism in Saccharomyces cerevisiae using combinatorial expression tuning. Biotechnology and Bioengineering, 114(6), 1301–1309.CrossRef
25.
Zurück zum Zitat Kuyper, M., Harhangi, H. R., Stave, A. K., Winkler, A. A., Jetten, M. S. M., de Laat, W. T. A. M., den Ridder, J. J. J., den Camp, H. J. M. O., van Dijken, J. P., & Pronk, J. T. (2003). High-level functional expression of a fungal xylose isomerase: The key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Research, 4(1), 69–78.CrossRef Kuyper, M., Harhangi, H. R., Stave, A. K., Winkler, A. A., Jetten, M. S. M., de Laat, W. T. A. M., den Ridder, J. J. J., den Camp, H. J. M. O., van Dijken, J. P., & Pronk, J. T. (2003). High-level functional expression of a fungal xylose isomerase: The key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Research, 4(1), 69–78.CrossRef
26.
Zurück zum Zitat Brat, D., Boles, E., & Wiedemann, B. (2009). Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 75(8), 2304–2311.CrossRef Brat, D., Boles, E., & Wiedemann, B. (2009). Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 75(8), 2304–2311.CrossRef
27.
Zurück zum Zitat Ha, S.-J., Kim, S. R., Choi, J.-H., Park, M. S., & Jin, Y.-S. (2011). Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro. Applied Microbiology and Biotechnology, 92(1), 77–84.CrossRef Ha, S.-J., Kim, S. R., Choi, J.-H., Park, M. S., & Jin, Y.-S. (2011). Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro. Applied Microbiology and Biotechnology, 92(1), 77–84.CrossRef
28.
Zurück zum Zitat Vilela, L. F., de Araujo, V. P. G., Paredes, R. S., Bon, E. P. S., Torres, F. A. G., Neves, B. C., & Eleutherio, E. C. A. (2015). Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain. AMB Express, 5, 16.CrossRef Vilela, L. F., de Araujo, V. P. G., Paredes, R. S., Bon, E. P. S., Torres, F. A. G., Neves, B. C., & Eleutherio, E. C. A. (2015). Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain. AMB Express, 5, 16.CrossRef
29.
Zurück zum Zitat Madhavan, A., Tamalampudi, S., Ushida, K., Kanai, D., Katahira, S., Srivastava, A., Fukuda, H., Bisaria, V. S., & Kondo, A. (2009). Xylose isomerase from polycentric fungus Orpinomyces: Gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Applied Microbiology and Biotechnology, 82(6), 1067–1078.CrossRef Madhavan, A., Tamalampudi, S., Ushida, K., Kanai, D., Katahira, S., Srivastava, A., Fukuda, H., Bisaria, V. S., & Kondo, A. (2009). Xylose isomerase from polycentric fungus Orpinomyces: Gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Applied Microbiology and Biotechnology, 82(6), 1067–1078.CrossRef
30.
Zurück zum Zitat Hector, R. E., Dien, B. S., Cotta, M. A., & Mertens, J. A. (2013). Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24. Biotechnology for Biofuels, 6(1), 84.CrossRef Hector, R. E., Dien, B. S., Cotta, M. A., & Mertens, J. A. (2013). Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24. Biotechnology for Biofuels, 6(1), 84.CrossRef
31.
Zurück zum Zitat Katahira, S., Muramoto, N., Moriya, S., Nagura, R., Tada, N., Yasutani, N., Ohkuma, M., Onishi, T., & Tokuhiro, K. (2017). Screening and evolution of a novel protist xylose isomerase from the termite Reticulitermes speratus for efficient xylose fermentation in Saccharomyces cerevisiae. Biotechnology for Biofuels, 10(1), 203.CrossRef Katahira, S., Muramoto, N., Moriya, S., Nagura, R., Tada, N., Yasutani, N., Ohkuma, M., Onishi, T., & Tokuhiro, K. (2017). Screening and evolution of a novel protist xylose isomerase from the termite Reticulitermes speratus for efficient xylose fermentation in Saccharomyces cerevisiae. Biotechnology for Biofuels, 10(1), 203.CrossRef
32.
Zurück zum Zitat Seike, T., Kobayashi, Y., Sahara, T., Ohgiya, S., Kamagata, Y., & Fujimori, K. E. (2019). Molecular evolutionary engineering of xylose isomerase to improve its catalytic activity and performance of micro-aerobic glucose/xylose co-fermentation in Saccharomyces cerevisiae. Biotechnology for Biofuels, 12(1), 139.CrossRef Seike, T., Kobayashi, Y., Sahara, T., Ohgiya, S., Kamagata, Y., & Fujimori, K. E. (2019). Molecular evolutionary engineering of xylose isomerase to improve its catalytic activity and performance of micro-aerobic glucose/xylose co-fermentation in Saccharomyces cerevisiae. Biotechnology for Biofuels, 12(1), 139.CrossRef
33.
Zurück zum Zitat Aeling, K. A., Salmon, K. A., Laplaza, J. M., Li, L., Headman, J. R., Hutagalung, A. H., & Picataggio, S. (2012). Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae. Journal of Industrial Microbiology & Biotechnology, 39(11), 1597–1604.CrossRef Aeling, K. A., Salmon, K. A., Laplaza, J. M., Li, L., Headman, J. R., Hutagalung, A. H., & Picataggio, S. (2012). Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae. Journal of Industrial Microbiology & Biotechnology, 39(11), 1597–1604.CrossRef
34.
Zurück zum Zitat Temer, B., dos Santos, L. V., Negri, V. A., Galhardo, J. P., Magalhães, P. H. M., José, J., Marschalk, C., Corrêa, T. L. R., Carazzolle, M. F., & Pereira, G. A. G. (2017). Conversion of an inactive xylose isomerase into a functional enzyme by co-expression of GroEL-GroES chaperonins in Saccharomyces cerevisiae. BMC Biotechnology, 17(1), 71.CrossRef Temer, B., dos Santos, L. V., Negri, V. A., Galhardo, J. P., Magalhães, P. H. M., José, J., Marschalk, C., Corrêa, T. L. R., Carazzolle, M. F., & Pereira, G. A. G. (2017). Conversion of an inactive xylose isomerase into a functional enzyme by co-expression of GroEL-GroES chaperonins in Saccharomyces cerevisiae. BMC Biotechnology, 17(1), 71.CrossRef
35.
Zurück zum Zitat Demeke, M. M., Foulquié-Moreno, M. R., Dumortier, F., & Thevelein, J. M. (2015). Rapid evolution of recombinant Saccharomyces cerevisiae for xylose fermentation through formation of extra-chromosomal circular DNA. PLoS Genetics, 11(3), e1005010.CrossRef Demeke, M. M., Foulquié-Moreno, M. R., Dumortier, F., & Thevelein, J. M. (2015). Rapid evolution of recombinant Saccharomyces cerevisiae for xylose fermentation through formation of extra-chromosomal circular DNA. PLoS Genetics, 11(3), e1005010.CrossRef
36.
Zurück zum Zitat Zhou, H., Cheng, J.-s., Wang, B. L., Fink, G. R., & Stephanopoulos, G. (2012). Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metabolic Engineering, 14(6), 611–622.CrossRef Zhou, H., Cheng, J.-s., Wang, B. L., Fink, G. R., & Stephanopoulos, G. (2012). Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metabolic Engineering, 14(6), 611–622.CrossRef
37.
Zurück zum Zitat Hou, J., Jiao, C., Peng, B., Shen, Y., & Bao, X. (2016). Mutation of a regulator Ask10p improves xylose isomerase activity through up-regulation of molecular chaperones in Saccharomyces cerevisiae. Metabolic Engineering, 38, 241–250.CrossRef Hou, J., Jiao, C., Peng, B., Shen, Y., & Bao, X. (2016). Mutation of a regulator Ask10p improves xylose isomerase activity through up-regulation of molecular chaperones in Saccharomyces cerevisiae. Metabolic Engineering, 38, 241–250.CrossRef
38.
Zurück zum Zitat Verhoeven, M. D., Lee, M., Kamoen, L., van den Broek, M., Janssen, D. B., Daran, J.-M. G., van Maris, A. J. A., & Pronk, J. T. (2017). Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis. Scientific Reports, 7(1), 46155.CrossRef Verhoeven, M. D., Lee, M., Kamoen, L., van den Broek, M., Janssen, D. B., Daran, J.-M. G., van Maris, A. J. A., & Pronk, J. T. (2017). Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis. Scientific Reports, 7(1), 46155.CrossRef
39.
Zurück zum Zitat Son, H., Lee, S. M., & Kim, K. J. (2018). Crystal structure and biochemical characterization of xylose isomerase from Piromyces sp. E2. Journal of Microbiology and Biotechnology, 28(4), 571–578.CrossRef Son, H., Lee, S. M., & Kim, K. J. (2018). Crystal structure and biochemical characterization of xylose isomerase from Piromyces sp. E2. Journal of Microbiology and Biotechnology, 28(4), 571–578.CrossRef
40.
Zurück zum Zitat Lee, M., Rozeboom, H. J., de Waal, P. P., de Jong, R. M., Dudek, H. M., & Janssen, D. B. (2017). Metal dependence of the xylose isomerase from Piromyces sp. E2 explored by activity profiling and protein crystallography. Biochemistry, 56(45), 5991–6005.CrossRef Lee, M., Rozeboom, H. J., de Waal, P. P., de Jong, R. M., Dudek, H. M., & Janssen, D. B. (2017). Metal dependence of the xylose isomerase from Piromyces sp. E2 explored by activity profiling and protein crystallography. Biochemistry, 56(45), 5991–6005.CrossRef
41.
Zurück zum Zitat Kobayashi, Y., Sahara, T., Ohgiya, S., Kamagata, Y., & Fujimori, K. E. (2018). Systematic optimization of gene expression of pentose phosphate pathway enhances ethanol production from a glucose/xylose mixed medium in a recombinant Saccharomyces cerevisiae. AMB Express, 8(1), 139.CrossRef Kobayashi, Y., Sahara, T., Ohgiya, S., Kamagata, Y., & Fujimori, K. E. (2018). Systematic optimization of gene expression of pentose phosphate pathway enhances ethanol production from a glucose/xylose mixed medium in a recombinant Saccharomyces cerevisiae. AMB Express, 8(1), 139.CrossRef
42.
Zurück zum Zitat Xu, H., Kim, S., Sorek, H., Lee, Y., Jeong, D., Kim, J., Oh, E. J., Yun, E. J., Wemmer, D. E., Kim, K. H., Kim, S. R., & Jin, Y.-S. (2016). PHO13 deletion-induced transcriptional activation prevents sedoheptulose accumulation during xylose metabolism in engineered Saccharomyces cerevisiae. Metabolic Engineering, 34, 88–96.CrossRef Xu, H., Kim, S., Sorek, H., Lee, Y., Jeong, D., Kim, J., Oh, E. J., Yun, E. J., Wemmer, D. E., Kim, K. H., Kim, S. R., & Jin, Y.-S. (2016). PHO13 deletion-induced transcriptional activation prevents sedoheptulose accumulation during xylose metabolism in engineered Saccharomyces cerevisiae. Metabolic Engineering, 34, 88–96.CrossRef
43.
Zurück zum Zitat Jojima, T., Omumasaba, C. A., Inui, M., & Yukawa, H. (2010). Sugar transporters in efficient utilization of mixed sugar substrates: Current knowledge and outlook. Applied Microbiology and Biotechnology, 85(3), 471–480.CrossRef Jojima, T., Omumasaba, C. A., Inui, M., & Yukawa, H. (2010). Sugar transporters in efficient utilization of mixed sugar substrates: Current knowledge and outlook. Applied Microbiology and Biotechnology, 85(3), 471–480.CrossRef
44.
Zurück zum Zitat Wieczorke, R., Krampe, S., Weierstall, T., Freidel, K., Hollenberg, C. P., & Boles, E. (1999). Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Letters, 464(3), 123–128.CrossRef Wieczorke, R., Krampe, S., Weierstall, T., Freidel, K., Hollenberg, C. P., & Boles, E. (1999). Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Letters, 464(3), 123–128.CrossRef
45.
Zurück zum Zitat Young, E. M., Tong, A., Bui, H., Spofford, C., & Alper, H. S. (2014). Rewiring yeast sugar transporter preference through modifying a conserved protein motif. Proceedings of the National Academy of Sciences, 111(1), 131–136.CrossRef Young, E. M., Tong, A., Bui, H., Spofford, C., & Alper, H. S. (2014). Rewiring yeast sugar transporter preference through modifying a conserved protein motif. Proceedings of the National Academy of Sciences, 111(1), 131–136.CrossRef
46.
Zurück zum Zitat Farwick, A., Bruder, S., Schadeweg, V., Oreb, M., & Boles, E. (2014). Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proceedings of the National Academy of Sciences, 111(14), 5159–5164.CrossRef Farwick, A., Bruder, S., Schadeweg, V., Oreb, M., & Boles, E. (2014). Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proceedings of the National Academy of Sciences, 111(14), 5159–5164.CrossRef
47.
Zurück zum Zitat Hamacher, T., Becker, J., Gárdonyi, M., Hahn-Hägerdal, B., & Boles, E. (2002). Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology, 148(9), 2783–2788.CrossRef Hamacher, T., Becker, J., Gárdonyi, M., Hahn-Hägerdal, B., & Boles, E. (2002). Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology, 148(9), 2783–2788.CrossRef
48.
Zurück zum Zitat Young, E., Poucher, A., Comer, A., Bailey, A., & Alper, H. (2011). Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host. Applied and Environmental Microbiology, 77(10), 3311–3319.CrossRef Young, E., Poucher, A., Comer, A., Bailey, A., & Alper, H. (2011). Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host. Applied and Environmental Microbiology, 77(10), 3311–3319.CrossRef
49.
Zurück zum Zitat Shin, H. Y., Nijland, J. G., de Waal, P. P., de Jong, R. M., Klaassen, P., & Driessen, A. J. M. (2015). An engineered cryptic Hxt11 sugar transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae. Biotechnology for Biofuels, 8, 176.CrossRef Shin, H. Y., Nijland, J. G., de Waal, P. P., de Jong, R. M., Klaassen, P., & Driessen, A. J. M. (2015). An engineered cryptic Hxt11 sugar transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae. Biotechnology for Biofuels, 8, 176.CrossRef
50.
Zurück zum Zitat Nijland, J. G., Shin, H. Y., de Jong, R. M., de Waal, P. P., Klaassen, P., & Driessen, A. J. (2014). Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae. Biotechnology for Biofuels, 7(1), 168.CrossRef Nijland, J. G., Shin, H. Y., de Jong, R. M., de Waal, P. P., Klaassen, P., & Driessen, A. J. (2014). Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae. Biotechnology for Biofuels, 7(1), 168.CrossRef
51.
Zurück zum Zitat Reider Apel, A., Ouellet, M., Szmidt-Middleton, H., Keasling, J. D., & Mukhopadhyay, A. (2016). Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae. Scientific Reports, 6, 19512.CrossRef Reider Apel, A., Ouellet, M., Szmidt-Middleton, H., Keasling, J. D., & Mukhopadhyay, A. (2016). Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae. Scientific Reports, 6, 19512.CrossRef
52.
Zurück zum Zitat Nijland, J. G., Shin, H. Y., de Waal, P. P., Klaassen, P., & Driessen, A. J. M. (2018). Increased xylose affinity of Hxt2 through gene shuffling of hexose transporters in Saccharomyces cerevisiae. Journal of Applied Microbiology, 124(2), 503–510.CrossRef Nijland, J. G., Shin, H. Y., de Waal, P. P., Klaassen, P., & Driessen, A. J. M. (2018). Increased xylose affinity of Hxt2 through gene shuffling of hexose transporters in Saccharomyces cerevisiae. Journal of Applied Microbiology, 124(2), 503–510.CrossRef
53.
Zurück zum Zitat de Sales, B. B., Scheid, B., Gonçalves, D. L., Knychala, M. M., Matsushika, A., Bon, E. P. S., & Stambuk, B. U. (2015). Cloning novel sugar transporters from Scheffersomyces (Pichia) stipitis allowing D-xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnology Letters, 37(10), 1973–1982.CrossRef de Sales, B. B., Scheid, B., Gonçalves, D. L., Knychala, M. M., Matsushika, A., Bon, E. P. S., & Stambuk, B. U. (2015). Cloning novel sugar transporters from Scheffersomyces (Pichia) stipitis allowing D-xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnology Letters, 37(10), 1973–1982.CrossRef
54.
Zurück zum Zitat Wang, C., Shen, Y., Hou, J., Suo, F., & Bao, X. (2013). An assay for functional xylose transporters in Saccharomyces cerevisiae. Analytical Biochemistry, 442(2), 241–248.CrossRef Wang, C., Shen, Y., Hou, J., Suo, F., & Bao, X. (2013). An assay for functional xylose transporters in Saccharomyces cerevisiae. Analytical Biochemistry, 442(2), 241–248.CrossRef
55.
Zurück zum Zitat Knoshaug, E. P., Vidgren, V., Magalhaes, F., Jarvis, E. E., Franden, M. A., Zhang, M., & Singh, A. (2015). Novel transporters from Kluyveromyces marxianus and Pichia guilliermondii expressed in Saccharomyces cerevisiae enable growth on L-arabinose and D-xylose. Yeast, 32(10), 615–628.CrossRef Knoshaug, E. P., Vidgren, V., Magalhaes, F., Jarvis, E. E., Franden, M. A., Zhang, M., & Singh, A. (2015). Novel transporters from Kluyveromyces marxianus and Pichia guilliermondii expressed in Saccharomyces cerevisiae enable growth on L-arabinose and D-xylose. Yeast, 32(10), 615–628.CrossRef
56.
Zurück zum Zitat Kim, H., Lee, H.-S., Park, H., Lee, D.-H., Boles, E., Chung, D., & Park, Y.-C. (2017). Enhanced production of xylitol from xylose by expression of Bacillus subtilis arabinose: H+ symporter and Scheffersomyces stipitis xylose reductase in recombinant Saccharomyces cerevisiae. Enzyme and Microbial Technology, 107, 7–14.CrossRef Kim, H., Lee, H.-S., Park, H., Lee, D.-H., Boles, E., Chung, D., & Park, Y.-C. (2017). Enhanced production of xylitol from xylose by expression of Bacillus subtilis arabinose: H+ symporter and Scheffersomyces stipitis xylose reductase in recombinant Saccharomyces cerevisiae. Enzyme and Microbial Technology, 107, 7–14.CrossRef
57.
Zurück zum Zitat Sharma, N. K., Behera, S., Arora, R., Kumar, S., & Sani, R. K. (2018). Xylose transport in yeast for lignocellulosic ethanol production: Current status. Journal of Bioscience and Bioengineering, 125(3), 259–267.CrossRef Sharma, N. K., Behera, S., Arora, R., Kumar, S., & Sani, R. K. (2018). Xylose transport in yeast for lignocellulosic ethanol production: Current status. Journal of Bioscience and Bioengineering, 125(3), 259–267.CrossRef
58.
Zurück zum Zitat Nijland, J. G., Shin, H. Y., Boender, L. G. M., de Waal, P. P., Klaassen, P., & Driessen, A. J. M. (2017). Improved xylose metabolism by a CYC8 mutant of Saccharomyces cerevisiae. Applied and Environmental Microbiology, 83(11), e00095–e00017.CrossRef Nijland, J. G., Shin, H. Y., Boender, L. G. M., de Waal, P. P., Klaassen, P., & Driessen, A. J. M. (2017). Improved xylose metabolism by a CYC8 mutant of Saccharomyces cerevisiae. Applied and Environmental Microbiology, 83(11), e00095–e00017.CrossRef
59.
Zurück zum Zitat Zha, J., Li, B.-Z., Shen, M.-H., Hu, M.-L., Song, H., & Yuan, Y.-J. (2013). Optimization of CDT-1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae. PLoS One, 8(7), e68317.CrossRef Zha, J., Li, B.-Z., Shen, M.-H., Hu, M.-L., Song, H., & Yuan, Y.-J. (2013). Optimization of CDT-1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae. PLoS One, 8(7), e68317.CrossRef
60.
Zurück zum Zitat Ha, S.-J., Galazka, J. M., Rin Kim, S., Choi, J.-H., Yang, X., Seo, J.-H., Louise Glass, N., Cate, J. H. D., & Jin, Y.-S. (2011). Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proceedings of the National Academy of Sciences, 108(2), 504–509.CrossRef Ha, S.-J., Galazka, J. M., Rin Kim, S., Choi, J.-H., Yang, X., Seo, J.-H., Louise Glass, N., Cate, J. H. D., & Jin, Y.-S. (2011). Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proceedings of the National Academy of Sciences, 108(2), 504–509.CrossRef
61.
Zurück zum Zitat Sato, T. K., Tremaine, M., Parreiras, L. S., Hebert, A. S., Myers, K. S., Higbee, A. J., Sardi, M., McIlwain, S. J., Ong, I. M., Breuer, R. J., Avanasi Narasimhan, R., McGee, M. A., Dickinson, Q., La Reau, A., Xie, D., Tian, M., Reed, J. L., Zhang, Y., Coon, J. J., Hittinger, C. T., Gasch, A. P., & Landick, R. (2016). Directed evolution reveals unexpected epistatic interactions that alter metabolic regulation and enable anaerobic xylose use by Saccharomyces cerevisiae. PLoS Genetics, 12(10), e1006372.CrossRef Sato, T. K., Tremaine, M., Parreiras, L. S., Hebert, A. S., Myers, K. S., Higbee, A. J., Sardi, M., McIlwain, S. J., Ong, I. M., Breuer, R. J., Avanasi Narasimhan, R., McGee, M. A., Dickinson, Q., La Reau, A., Xie, D., Tian, M., Reed, J. L., Zhang, Y., Coon, J. J., Hittinger, C. T., Gasch, A. P., & Landick, R. (2016). Directed evolution reveals unexpected epistatic interactions that alter metabolic regulation and enable anaerobic xylose use by Saccharomyces cerevisiae. PLoS Genetics, 12(10), e1006372.CrossRef
62.
Zurück zum Zitat Osiro, K. O., Borgström, C., Brink, D. P., Fjölnisdóttir, B. L., & Gorwa-Grauslund, M. F. (2019). Exploring the xylose paradox in Saccharomyces cerevisiae through in vivo sugar signalomics of targeted deletants. Microbial Cell Factories, 18(1), 88.CrossRef Osiro, K. O., Borgström, C., Brink, D. P., Fjölnisdóttir, B. L., & Gorwa-Grauslund, M. F. (2019). Exploring the xylose paradox in Saccharomyces cerevisiae through in vivo sugar signalomics of targeted deletants. Microbial Cell Factories, 18(1), 88.CrossRef
63.
Zurück zum Zitat dos Santos, L. V., Carazzolle, M. F., Nagamatsu, S. T., Sampaio, N. M. V., Almeida, L. D., Pirolla, R. A. S., Borelli, G., Corrêa, T. L. R., Argueso, J. L., & Pereira, G. A. G. (2016). Unraveling the genetic basis of xylose consumption in engineered Saccharomyces cerevisiae strains. Scientific Reports, 6(1), 38676.CrossRef dos Santos, L. V., Carazzolle, M. F., Nagamatsu, S. T., Sampaio, N. M. V., Almeida, L. D., Pirolla, R. A. S., Borelli, G., Corrêa, T. L. R., Argueso, J. L., & Pereira, G. A. G. (2016). Unraveling the genetic basis of xylose consumption in engineered Saccharomyces cerevisiae strains. Scientific Reports, 6(1), 38676.CrossRef
64.
Zurück zum Zitat Tran Nguyen Hoang, P., Ko, J. K., Gong, G., Um, Y., & Lee, S.-M. (2018). Genomic and phenotypic characterization of a refactored xylose-utilizing Saccharomyces cerevisiae strain for lignocellulosic biofuel production. Biotechnology for Biofuels, 11(1), 268.CrossRef Tran Nguyen Hoang, P., Ko, J. K., Gong, G., Um, Y., & Lee, S.-M. (2018). Genomic and phenotypic characterization of a refactored xylose-utilizing Saccharomyces cerevisiae strain for lignocellulosic biofuel production. Biotechnology for Biofuels, 11(1), 268.CrossRef
65.
Zurück zum Zitat Shen, Y., Hou, J., & Bao, X. (2013). Enhanced xylose fermentation capacity related to an altered glucose sensing and repression network in a recombinant Saccharomyces cerevisiae. Bioengineered, 4(6), 435–437.CrossRef Shen, Y., Hou, J., & Bao, X. (2013). Enhanced xylose fermentation capacity related to an altered glucose sensing and repression network in a recombinant Saccharomyces cerevisiae. Bioengineered, 4(6), 435–437.CrossRef
66.
Zurück zum Zitat Bergdahl, B., Sandström, A. G., Borgström, C., Boonyawan, T., van Niel, E. W. J., & Gorwa-Grauslund, M. F. (2013). Engineering yeast hexokinase 2 for improved tolerance toward xylose-induced inactivation. PLoS One, 8(9), e75055.CrossRef Bergdahl, B., Sandström, A. G., Borgström, C., Boonyawan, T., van Niel, E. W. J., & Gorwa-Grauslund, M. F. (2013). Engineering yeast hexokinase 2 for improved tolerance toward xylose-induced inactivation. PLoS One, 8(9), e75055.CrossRef
67.
Zurück zum Zitat Matsushika, A., Nagashima, A., Goshima, T., & Hoshino, T. (2013). Fermentation of xylose causes inefficient metabolic state due to carbon/energy starvation and reduced glycolytic flux in recombinant industrial Saccharomyces cerevisiae. PLoS One, 8(7), e69005.CrossRef Matsushika, A., Nagashima, A., Goshima, T., & Hoshino, T. (2013). Fermentation of xylose causes inefficient metabolic state due to carbon/energy starvation and reduced glycolytic flux in recombinant industrial Saccharomyces cerevisiae. PLoS One, 8(7), e69005.CrossRef
68.
Zurück zum Zitat Feng, X., & Zhao, H. (2013). Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis. Microbial Cell Factories, 12, 114.CrossRef Feng, X., & Zhao, H. (2013). Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis. Microbial Cell Factories, 12, 114.CrossRef
69.
Zurück zum Zitat Matsushika, A., Goshima, T., & Hoshino, T. (2014). Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose. Microbial Cell Factories, 13, 16.CrossRef Matsushika, A., Goshima, T., & Hoshino, T. (2014). Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose. Microbial Cell Factories, 13, 16.CrossRef
70.
Zurück zum Zitat Feng, X., & Zhao, H. (2013). Investigating host dependence of xylose utilization in recombinant Saccharomyces cerevisiae strains using RNA-seq analysis. Biotechnology for Biofuels, 6(1), 96.MathSciNetCrossRef Feng, X., & Zhao, H. (2013). Investigating host dependence of xylose utilization in recombinant Saccharomyces cerevisiae strains using RNA-seq analysis. Biotechnology for Biofuels, 6(1), 96.MathSciNetCrossRef
71.
Zurück zum Zitat Weimberg, R. (1961). Pentose oxidation by Pseudomonas fragi. The Journal of Biological Chemistry, 236(3), 629–635.CrossRef Weimberg, R. (1961). Pentose oxidation by Pseudomonas fragi. The Journal of Biological Chemistry, 236(3), 629–635.CrossRef
72.
Zurück zum Zitat Tai, Y. S., Xiong, M., Jambunathan, P., Wang, J., Wang, J., Stapleton, C., & Zhang, K. (2016). Engineering nonphosphorylative metabolism to generate lignocellulose-derived products. Nature Chemical Biology, 12(4), 247–253.CrossRef Tai, Y. S., Xiong, M., Jambunathan, P., Wang, J., Wang, J., Stapleton, C., & Zhang, K. (2016). Engineering nonphosphorylative metabolism to generate lignocellulose-derived products. Nature Chemical Biology, 12(4), 247–253.CrossRef
73.
Zurück zum Zitat Bai, W., Tai, Y.-S., Wang, J., Wang, J., Jambunathan, P., Fox, K. J., & Zhang, K. (2016). Engineering nonphosphorylative metabolism to synthesize mesaconate from lignocellulosic sugars in Escherichia coli. Metabolic Engineering, 38, 285–292.CrossRef Bai, W., Tai, Y.-S., Wang, J., Wang, J., Jambunathan, P., Fox, K. J., & Zhang, K. (2016). Engineering nonphosphorylative metabolism to synthesize mesaconate from lignocellulosic sugars in Escherichia coli. Metabolic Engineering, 38, 285–292.CrossRef
74.
Zurück zum Zitat Wasserstrom, L., Portugal-Nunes, D., Almqvist, H., Sandström, A. G., Lidén, G., & Gorwa-Grauslund, M. F. (2018). Exploring D-xylose oxidation in Saccharomyces cerevisiae through the Weimberg pathway. AMB Express, 8(1), 33.CrossRef Wasserstrom, L., Portugal-Nunes, D., Almqvist, H., Sandström, A. G., Lidén, G., & Gorwa-Grauslund, M. F. (2018). Exploring D-xylose oxidation in Saccharomyces cerevisiae through the Weimberg pathway. AMB Express, 8(1), 33.CrossRef
75.
Zurück zum Zitat Borgström, C., Wasserstrom, L., Almqvist, H., Broberg, K., Klein, B., Noack, S., Lidén, G., & Gorwa-Grauslund, M. F. (2019). Identification of modifications procuring growth on xylose in recombinant Saccharomyces cerevisiae strains carrying the Weimberg pathway. Metabolic Engineering, 55, 1–11.CrossRef Borgström, C., Wasserstrom, L., Almqvist, H., Broberg, K., Klein, B., Noack, S., Lidén, G., & Gorwa-Grauslund, M. F. (2019). Identification of modifications procuring growth on xylose in recombinant Saccharomyces cerevisiae strains carrying the Weimberg pathway. Metabolic Engineering, 55, 1–11.CrossRef
76.
Zurück zum Zitat Kwak, S., Jo, J. H., Yun, E. J., Jin, Y.-S., & Seo, J.-H. (2019). Production of biofuels and chemicals from xylose using native and engineered yeast strains. Biotechnology Advances, 37(2), 271–283.CrossRef Kwak, S., Jo, J. H., Yun, E. J., Jin, Y.-S., & Seo, J.-H. (2019). Production of biofuels and chemicals from xylose using native and engineered yeast strains. Biotechnology Advances, 37(2), 271–283.CrossRef
77.
Zurück zum Zitat Parreiras, L. S., Breuer, R. J., Avanasi Narasimhan, R., Higbee, A. J., La Reau, A., Tremaine, M., Qin, L., Willis, L. B., Bice, B. D., Bonfert, B. L., Pinhancos, R. C., Balloon, A. J., Uppugundla, N., Liu, T., Li, C., Tanjore, D., Ong, I. M., Li, H., Pohlmann, E. L., Serate, J., Withers, S. T., Simmons, B. A., Hodge, D. B., Westphall, M. S., Coon, J. J., Dale, B. E., Balan, V., Keating, D. H., Zhang, Y., Landick, R., Gasch, A. P., & Sato, T. K. (2014). Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover. PLoS One, 9(9), e107499.CrossRef Parreiras, L. S., Breuer, R. J., Avanasi Narasimhan, R., Higbee, A. J., La Reau, A., Tremaine, M., Qin, L., Willis, L. B., Bice, B. D., Bonfert, B. L., Pinhancos, R. C., Balloon, A. J., Uppugundla, N., Liu, T., Li, C., Tanjore, D., Ong, I. M., Li, H., Pohlmann, E. L., Serate, J., Withers, S. T., Simmons, B. A., Hodge, D. B., Westphall, M. S., Coon, J. J., Dale, B. E., Balan, V., Keating, D. H., Zhang, Y., Landick, R., Gasch, A. P., & Sato, T. K. (2014). Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover. PLoS One, 9(9), e107499.CrossRef
78.
Zurück zum Zitat Demeke, M. M., Dietz, H., Li, Y., Foulquié-Moreno, M. R., Mutturi, S., Deprez, S., Den Abt, T., Bonini, B. M., Liden, G., Dumortier, F., Verplaetse, A., Boles, E., & Thevelein, J. M. (2013). Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnology for Biofuels, 6(1), 89.CrossRef Demeke, M. M., Dietz, H., Li, Y., Foulquié-Moreno, M. R., Mutturi, S., Deprez, S., Den Abt, T., Bonini, B. M., Liden, G., Dumortier, F., Verplaetse, A., Boles, E., & Thevelein, J. M. (2013). Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnology for Biofuels, 6(1), 89.CrossRef
Metadaten
Titel
Systematic Metabolic Engineering of Saccharomyces cerevisiae for Efficient Utilization of Xylose
verfasst von
Jing Han
Guoli Gong
Xia Wu
Jian Zha
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-65584-6_7