Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

1. Taking the Next Step in GaN: Bulk GaN Substrates and GaN-on-Si Epitaxy for Electronics

Authors : Joff Derluyn, Marianne Germain, Elke Meissner

Published in: Gallium Nitride-enabled High Frequency and High Efficiency Power Conversion

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

One of the major factors in determining the quality of GaN technology is the epitaxial step. This chapter reviews two different approaches: the use of bulk GaN substrates and GaN-on-Si epitaxy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference M. Asif Khan, J.N. Kuznia, D.T. Olson, Appl. Phys. Lett. 65(9), 1121–1123 (1994)CrossRef M. Asif Khan, J.N. Kuznia, D.T. Olson, Appl. Phys. Lett. 65(9), 1121–1123 (1994)CrossRef
3.
go back to reference D. Ehrentraut, E. Meissner, M. Bockowski (eds.), Technology of Gallium Nitride Crystal Growth (Springer, Heidelberg, 2010) D. Ehrentraut, E. Meissner, M. Bockowski (eds.), Technology of Gallium Nitride Crystal Growth (Springer, Heidelberg, 2010)
4.
go back to reference S. Porowski, B. Sadovyi, S. Gierlotka, S.J. Rzoska, I. Grzegory, I. Petrusha, V. Turkevich, D. Stratiichuk, The challenge of decomposition and melting of gallium nitride under high pressure and high temperature. J. Phys. Chem. Solid 85, 138–143 (2015)CrossRef S. Porowski, B. Sadovyi, S. Gierlotka, S.J. Rzoska, I. Grzegory, I. Petrusha, V. Turkevich, D. Stratiichuk, The challenge of decomposition and melting of gallium nitride under high pressure and high temperature. J. Phys. Chem. Solid 85, 138–143 (2015)CrossRef
5.
go back to reference W. Utsumi, H. Saitoh, H. Kaneko, T. Watanuki, K. Aoki, O. Shimomura, Congruent melting of gallium nitride at 6GPa and its application to single-crystal growth. Nat. Mater. 2, 735–738 (2003)CrossRef W. Utsumi, H. Saitoh, H. Kaneko, T. Watanuki, K. Aoki, O. Shimomura, Congruent melting of gallium nitride at 6GPa and its application to single-crystal growth. Nat. Mater. 2, 735–738 (2003)CrossRef
6.
go back to reference J. Karpiński, J. Jun, S. Porowski, Equilibrium pressure of N2 over GaN and high pressure solution growth of GaN. J. Cryst. Growth 66, 1–7 (1984)CrossRef J. Karpiński, J. Jun, S. Porowski, Equilibrium pressure of N2 over GaN and high pressure solution growth of GaN. J. Cryst. Growth 66, 1–7 (1984)CrossRef
7.
go back to reference A.G. Sokol, Y.N. Palyanov, N.V. Surovtsev, Incongruent melting of gallium nitride at7.5GPa. Diam. Relat. Mater. 16, 431–434 (2007)CrossRef A.G. Sokol, Y.N. Palyanov, N.V. Surovtsev, Incongruent melting of gallium nitride at7.5GPa. Diam. Relat. Mater. 16, 431–434 (2007)CrossRef
8.
go back to reference K. Harafuji, T. Tsuchiya, K. Kawamura, Molecular dynamics simulation for evaluating melting point of wurtzite-type GaN crystal. J. Appl. Phys. 96, 2501–2512 (2004)CrossRef K. Harafuji, T. Tsuchiya, K. Kawamura, Molecular dynamics simulation for evaluating melting point of wurtzite-type GaN crystal. J. Appl. Phys. 96, 2501–2512 (2004)CrossRef
9.
go back to reference I. Grzegory, High pressure growth of bulk GaN from solutions in gallium. J. Phys. Condens. Matter 13, 6875 (2001)CrossRef I. Grzegory, High pressure growth of bulk GaN from solutions in gallium. J. Phys. Condens. Matter 13, 6875 (2001)CrossRef
11.
go back to reference M. Bockowski, High nitrogen pressure solution growth of GaN. Jpn. J. Appl. Phys. 53, 100203 (2014)CrossRef M. Bockowski, High nitrogen pressure solution growth of GaN. Jpn. J. Appl. Phys. 53, 100203 (2014)CrossRef
12.
go back to reference P. Rudolph (ed.), Bulk crystal growth, in Handbook of Crystal Growth, 2nd edn., (Elsevier Verlag., ISBN: 978-0-444-63303-3, 2015) P. Rudolph (ed.), Bulk crystal growth, in Handbook of Crystal Growth, 2nd edn., (Elsevier Verlag., ISBN: 978-0-444-63303-3, 2015)
13.
go back to reference G. Sun, E. Meissner, P. Berwian, G. Müller, Application of a thermogravimetric technique for the determination of low nitrogen solubilities in metals: Using iron as an example. Thermochim. Acta 474(1–2), 36–40 (2008)CrossRef G. Sun, E. Meissner, P. Berwian, G. Müller, Application of a thermogravimetric technique for the determination of low nitrogen solubilities in metals: Using iron as an example. Thermochim. Acta 474(1–2), 36–40 (2008)CrossRef
14.
go back to reference D. Elwell, H.J. Scheel, The Growth of Crystals in Solution, Advances in Colloid and Interface Science, vol 10 (Academic Press, London/New York, 1979), pp. 215–252 D. Elwell, H.J. Scheel, The Growth of Crystals in Solution, Advances in Colloid and Interface Science, vol 10 (Academic Press, London/New York, 1979), pp. 215–252
15.
go back to reference S. Hussy, E. Meissner, J. Friedrich, Low-pressure solution growth (LPSG) of GaN templates with diameters up to 3 in. J. Cryst. Growth 310, 738–747 (2008)CrossRef S. Hussy, E. Meissner, J. Friedrich, Low-pressure solution growth (LPSG) of GaN templates with diameters up to 3 in. J. Cryst. Growth 310, 738–747 (2008)CrossRef
16.
go back to reference Y. Mori, M. Imade, M. Maruyama, M. Yoshimura, Growth of GaN crystals by Na flux method. ECS J. Solid State Sci. Technol 2(8), N3068–N3071 (2013)CrossRef Y. Mori, M. Imade, M. Maruyama, M. Yoshimura, Growth of GaN crystals by Na flux method. ECS J. Solid State Sci. Technol 2(8), N3068–N3071 (2013)CrossRef
17.
go back to reference D. Ehrentraut, E. Meissner, A review on the Na-flux method toward growth of large-size GaN crystal, in Technology of GaN Crystal Growth, ed. by D. Ehrentraut, E. Meissner, M. Bockowski (Eds), (Springer Verlag, Heidelberg, 2010) D. Ehrentraut, E. Meissner, A review on the Na-flux method toward growth of large-size GaN crystal, in Technology of GaN Crystal Growth, ed. by D. Ehrentraut, E. Meissner, M. Bockowski (Eds), (Springer Verlag, Heidelberg, 2010)
18.
go back to reference R. Doradziński, R. Dwiliński, J. Garczyński, L.P. Sierzputowski, Y. Kanbara, Ammonothermal growth of GaN under Ammono-basic conditions, in Technology of Gallium Nitride Crystal Growth, pp. 137–160CrossRef R. Doradziński, R. Dwiliński, J. Garczyński, L.P. Sierzputowski, Y. Kanbara, Ammonothermal growth of GaN under Ammono-basic conditions, in Technology of Gallium Nitride Crystal Growth, pp. 137–160CrossRef
19.
go back to reference D. Ehrentraut, Y. Kagamitani, T. Fukuda, F. Orito, S. Kawabata, K. Katano, S. Terada, Reviewing recent developments in the acid ammonothermal crystal growth of gallium nitride. J. Cryst. Growth 310, 3902–3906 (2008)CrossRef D. Ehrentraut, Y. Kagamitani, T. Fukuda, F. Orito, S. Kawabata, K. Katano, S. Terada, Reviewing recent developments in the acid ammonothermal crystal growth of gallium nitride. J. Cryst. Growth 310, 3902–3906 (2008)CrossRef
20.
go back to reference M.P. D’Evelyn, D. Ehrentraut, W. Jiang, D.S. Kamber, B.C. Downey, R.T. Pakalapati, H.-D. Yoo Ammonothermal, Bulk GaN substrates for power electronics. ECS Trans. 58(4), 287–294 (2013)CrossRef M.P. D’Evelyn, D. Ehrentraut, W. Jiang, D.S. Kamber, B.C. Downey, R.T. Pakalapati, H.-D. Yoo Ammonothermal, Bulk GaN substrates for power electronics. ECS Trans. 58(4), 287–294 (2013)CrossRef
21.
go back to reference N.S. Alt, E. Meissner, et al., Development of a novel in situ monitoring technology for ammonothermal reactors. J. Cryst. Growth 350, 2–4 (2012)CrossRef N.S. Alt, E. Meissner, et al., Development of a novel in situ monitoring technology for ammonothermal reactors. J. Cryst. Growth 350, 2–4 (2012)CrossRef
22.
go back to reference T.G. Steigerwald, N.S.A. Alt, B. Hertweck, E. Schluecker, Feasibility of density and viscosity measurements under ammonothermal conditions. J. Cryst. Growth 403, 59 (2014)CrossRef T.G. Steigerwald, N.S.A. Alt, B. Hertweck, E. Schluecker, Feasibility of density and viscosity measurements under ammonothermal conditions. J. Cryst. Growth 403, 59 (2014)CrossRef
23.
go back to reference S. Zhang, F. Hintze, W. Schnick, R. Niewa, Intermediates in Ammonothermal GaN crystal growth under Ammono-acidic conditions. Eur. J. Inorg. Chem. 32, 5387 (2013)CrossRef S. Zhang, F. Hintze, W. Schnick, R. Niewa, Intermediates in Ammonothermal GaN crystal growth under Ammono-acidic conditions. Eur. J. Inorg. Chem. 32, 5387 (2013)CrossRef
26.
go back to reference R. Juza, H. Jacobs, H. Gerke, Ammonothermalsynthese von Metallamiden und Metallnitriden. Ber. Bunsenges. Phys. Chem. 70, 1103–1105 (1966) R. Juza, H. Jacobs, H. Gerke, Ammonothermalsynthese von Metallamiden und Metallnitriden. Ber. Bunsenges. Phys. Chem. 70, 1103–1105 (1966)
27.
go back to reference H. Jacobs, H. Scholze, Untersuchung des Systems Na/LaNH3. Z. Anorg. Allg. Chem. 427, 8–16 (1976)CrossRef H. Jacobs, H. Scholze, Untersuchung des Systems Na/LaNH3. Z. Anorg. Allg. Chem. 427, 8–16 (1976)CrossRef
28.
go back to reference U. Zachwieja, H. Jacobs, Synthesis of Bariumimide from the elements and orientational disorder of anions in BaND, studied by neutron diffraction from 8 K to 294 K. J. Less-Common Met 161, 175–184 (1990)CrossRef U. Zachwieja, H. Jacobs, Synthesis of Bariumimide from the elements and orientational disorder of anions in BaND, studied by neutron diffraction from 8 K to 294 K. J. Less-Common Met 161, 175–184 (1990)CrossRef
29.
go back to reference U. Zachwieja u, H. Jacobs, Ammonothermalsynthese von Kupfernitrid, CU3N. J. Less-Cemmen Met 161, 175–184 (1990)CrossRef U. Zachwieja u, H. Jacobs, Ammonothermalsynthese von Kupfernitrid, CU3N. J. Less-Cemmen Met 161, 175–184 (1990)CrossRef
30.
go back to reference S. Kaskel, M. Khanna, B. Zibrowius, H.-W. Schmidt, D. Ullner, Crystal growth in supercritical ammonia using high surface area silicon nitride feedstock. J. Cryst. Growth 261, 99–104 (2004)CrossRef S. Kaskel, M. Khanna, B. Zibrowius, H.-W. Schmidt, D. Ullner, Crystal growth in supercritical ammonia using high surface area silicon nitride feedstock. J. Cryst. Growth 261, 99–104 (2004)CrossRef
31.
go back to reference H. Jacobs, H. Mengis, Preparation and crystal structure of a sodium silicon nitride, NaSbN3, Eur. J. Solid state. Inorg. Chem. 30, 45–53 (1993) H. Jacobs, H. Mengis, Preparation and crystal structure of a sodium silicon nitride, NaSbN3, Eur. J. Solid state. Inorg. Chem. 30, 45–53 (1993)
32.
go back to reference H. Jacobs, R. Nymwegen, Darstellung und Kristallstruktur eines Kaliumnitridophosphats, K3P6N11. Z. Anorg. Allg. Chem. 623, 429–433 (1997)CrossRef H. Jacobs, R. Nymwegen, Darstellung und Kristallstruktur eines Kaliumnitridophosphats, K3P6N11. Z. Anorg. Allg. Chem. 623, 429–433 (1997)CrossRef
33.
go back to reference J. Hausler, L. Neudert, M. Mallmann, R. Niklaus, A.-C.L. Kimmel, S.A. Nicolas, E.S. Alt, O. Oeckler, W. Schnick, Ammonothermal synthesis of novel nitrides: Case study on CaGaSiN3. Chem. Eur. J. 23, 2583–2590 (2017)CrossRef J. Hausler, L. Neudert, M. Mallmann, R. Niklaus, A.-C.L. Kimmel, S.A. Nicolas, E.S. Alt, O. Oeckler, W. Schnick, Ammonothermal synthesis of novel nitrides: Case study on CaGaSiN3. Chem. Eur. J. 23, 2583–2590 (2017)CrossRef
34.
go back to reference J. Hertrampf, N.S.A. Alt, E. Schlücker, R. Niewa, SrBa2(NH2)6: A new ternary amide from ammonothermal synthesis. Z. Kristallogr. Suppl 35, 80 (2015) J. Hertrampf, N.S.A. Alt, E. Schlücker, R. Niewa, SrBa2(NH2)6: A new ternary amide from ammonothermal synthesis. Z. Kristallogr. Suppl 35, 80 (2015)
35.
go back to reference T. Yoshida, Y. Oshima, K. Watanabe, T. Tsuchiya, T. Mishima, Ultrahigh-speed growth of GaN by hydride vapor phase epitaxy. Phys. Status Solidi C 8(7–8), 2110 (2011)CrossRef T. Yoshida, Y. Oshima, K. Watanabe, T. Tsuchiya, T. Mishima, Ultrahigh-speed growth of GaN by hydride vapor phase epitaxy. Phys. Status Solidi C 8(7–8), 2110 (2011)CrossRef
36.
go back to reference H.P. Maruska, J.J. Tietjen, The preparation and properties of vapor-deposited single-crystal GaN. Appl. Phys. Lett. 15(10), 327 (1969)CrossRef H.P. Maruska, J.J. Tietjen, The preparation and properties of vapor-deposited single-crystal GaN. Appl. Phys. Lett. 15(10), 327 (1969)CrossRef
37.
go back to reference T. Bohnen, H. Ashraf, G.W.G. van Dreumel, S. Verhagen, J.L. Weyher, P.R. Hageman, E. Vlieg, Enhanced growth rates and reduced parasitic deposition by the substitution of Cl2 for HCl in GaN HVPE. J. Cryst. Growth 312, 2542 (2010)CrossRef T. Bohnen, H. Ashraf, G.W.G. van Dreumel, S. Verhagen, J.L. Weyher, P.R. Hageman, E. Vlieg, Enhanced growth rates and reduced parasitic deposition by the substitution of Cl2 for HCl in GaN HVPE. J. Cryst. Growth 312, 2542 (2010)CrossRef
38.
go back to reference K. Fujito, S. Kubo, H. Nagaoka, T. Mochizuki, H. Namita, S. Nagao, Bulk GaN crystals grown by HVPE. J. Cryst. Growth 311, 3011 (2009)CrossRef K. Fujito, S. Kubo, H. Nagaoka, T. Mochizuki, H. Namita, S. Nagao, Bulk GaN crystals grown by HVPE. J. Cryst. Growth 311, 3011 (2009)CrossRef
39.
go back to reference E. Richter, M. Gründer, C. Netzel, M. Weyers, G. Tränkle, Growth of GaN boules via vertical HVPE. J. Cryst. Growth 350, 89 (2012)CrossRef E. Richter, M. Gründer, C. Netzel, M. Weyers, G. Tränkle, Growth of GaN boules via vertical HVPE. J. Cryst. Growth 350, 89 (2012)CrossRef
40.
go back to reference F. Lipski, M. Klein, X. Yao, F. Scholz, Studies about wafer bow of freestanding GaN substrates grown by hydride vapor phase epitaxy. J. Cryst. Growth 352, 235 (2012)CrossRef F. Lipski, M. Klein, X. Yao, F. Scholz, Studies about wafer bow of freestanding GaN substrates grown by hydride vapor phase epitaxy. J. Cryst. Growth 352, 235 (2012)CrossRef
41.
go back to reference H. Aida, K. Koyama, D. Martin, K. Ikejiri, T. Aoyagi, M. Takeuchi, S.W. Kim, H. Takeda, N. Aota, N. Grandjean, Optical characteristics of InGaN/GaN light-emitting diodes depending on wafer bowing controlled by laser-treated grid patterns. Appl. Phys. Express 6, 035502 (2013)CrossRef H. Aida, K. Koyama, D. Martin, K. Ikejiri, T. Aoyagi, M. Takeuchi, S.W. Kim, H. Takeda, N. Aota, N. Grandjean, Optical characteristics of InGaN/GaN light-emitting diodes depending on wafer bowing controlled by laser-treated grid patterns. Appl. Phys. Express 6, 035502 (2013)CrossRef
42.
go back to reference I. Grzegory, B. Łucznik, M. Boćkowski, B. Pastuszka, M. Kryśko, G. Kamler, G. Nowak, S. Porowski, Growth of bulk GaN by HVPE on pressure grown seeds. Proceedings of SPIE 6121, Gallium Nitride Materials and Devices,612107, 3 March 2006. https://doi.org/10.1117/12.645976 I. Grzegory, B. Łucznik, M. Boćkowski, B. Pastuszka, M. Kryśko, G. Kamler, G. Nowak, S. Porowski, Growth of bulk GaN by HVPE on pressure grown seeds. Proceedings of SPIE 6121, Gallium Nitride Materials and Devices,612107, 3 March 2006. https://​doi.​org/​10.​1117/​12.​645976
43.
go back to reference B. Łucznik, B. Pastuszka, I. Grzegory, M. Boćkowski, G. Kamler, E. Litwin-Staszewska, S. Porowski, Deposition of thick GaN layers by HVPE on the pressure grown GaN substrates. J. Cryst. Growth 281, 38–46 (2005)CrossRef B. Łucznik, B. Pastuszka, I. Grzegory, M. Boćkowski, G. Kamler, E. Litwin-Staszewska, S. Porowski, Deposition of thick GaN layers by HVPE on the pressure grown GaN substrates. J. Cryst. Growth 281, 38–46 (2005)CrossRef
44.
go back to reference H. Teisseyre, C. Skierbiszewski, B. Łucznik, G. Kamler, A. Feduniewicz, M. Siekacz, T. Suski, P. Perlin, I. Grzegory, S. Porowski, Free and bound excitons in GaN/AlGaN homoepitaxial quantum wells grown on bulk GaN substrate along the nonpolar (11-20) direction Appl. Phys. Lett. 86, 162112 (2005) H. Teisseyre, C. Skierbiszewski, B. Łucznik, G. Kamler, A. Feduniewicz, M. Siekacz, T. Suski, P. Perlin, I. Grzegory, S. Porowski, Free and bound excitons in GaN/AlGaN homoepitaxial quantum wells grown on bulk GaN substrate along the nonpolar (11-20) direction Appl. Phys. Lett. 86, 162112 (2005)
45.
go back to reference Y. Oshima, T. Yoshida, T. Eri, M. Shibata, T. Mishima, Thermal and electrical properties of high-quality freestanding GaN wafers with high carrier concentration. Jpn. J. Appl. Phys. 45, 7685 (2006)CrossRef Y. Oshima, T. Yoshida, T. Eri, M. Shibata, T. Mishima, Thermal and electrical properties of high-quality freestanding GaN wafers with high carrier concentration. Jpn. J. Appl. Phys. 45, 7685 (2006)CrossRef
46.
go back to reference H. Fujikura et al., Hydride-vapor-phase epitaxial growth of highly pure GaN layers with smooth as-grown surfaces on freestanding GaN substrates. Jpn. J. Appl. Phys. 56, 085503 (2017)CrossRef H. Fujikura et al., Hydride-vapor-phase epitaxial growth of highly pure GaN layers with smooth as-grown surfaces on freestanding GaN substrates. Jpn. J. Appl. Phys. 56, 085503 (2017)CrossRef
47.
go back to reference K. Yamane, T. Matsubara, T. Yamamoto, N. Okada, A. Wakahara, K. Tadatomo, Origin of lattice bowing of freestanding GaN substrates grown by hydride vapor phase epitaxy. J. Appl. Phys. 119, 045707 (2016)CrossRef K. Yamane, T. Matsubara, T. Yamamoto, N. Okada, A. Wakahara, K. Tadatomo, Origin of lattice bowing of freestanding GaN substrates grown by hydride vapor phase epitaxy. J. Appl. Phys. 119, 045707 (2016)CrossRef
48.
go back to reference A. Krost, A. Dadgar, GaN-based devices on Si. Phys. Status Solidi A 194, 361–375., r (2002)CrossRef A. Krost, A. Dadgar, GaN-based devices on Si. Phys. Status Solidi A 194, 361–375., r (2002)CrossRef
49.
go back to reference J. Brown et al., Performance of AlGaN/GaN HFETs fabricated on 100 mm silicon substrates for wireless base station applications. Microwave Symposium Digest, 2004 IEEE MTT-S International, Fort Worth, 2004 J. Brown et al., Performance of AlGaN/GaN HFETs fabricated on 100 mm silicon substrates for wireless base station applications. Microwave Symposium Digest, 2004 IEEE MTT-S International, Fort Worth, 2004
50.
go back to reference K. Cheng et al., AlGaN/GaN high electron mobility transistors grown on 150 mm Si(111) substrates with high uniformity. Jpn. J. Appl. Phys. 47(3R), 1553 (2008)CrossRef K. Cheng et al., AlGaN/GaN high electron mobility transistors grown on 150 mm Si(111) substrates with high uniformity. Jpn. J. Appl. Phys. 47(3R), 1553 (2008)CrossRef
51.
go back to reference O. Ambacher et al., Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85, 3222–3233 (1999)CrossRef O. Ambacher et al., Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85, 3222–3233 (1999)CrossRef
52.
go back to reference J. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice, 2nd edn. (Academic Press, 1998.) ISBN-13), pp. 978–0126738421 J. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice, 2nd edn. (Academic Press, 1998.) ISBN-13), pp. 978–0126738421
56.
go back to reference Y. Uemoto et al., Gate injection transistor (GIT)—A normally-off AlGaN/GaN power transistor using conductivity modulation. Trans. Electr. Dev 54-12, 3393–3399 (2007)CrossRef Y. Uemoto et al., Gate injection transistor (GIT)—A normally-off AlGaN/GaN power transistor using conductivity modulation. Trans. Electr. Dev 54-12, 3393–3399 (2007)CrossRef
58.
go back to reference M.R. Leys et al., Growth of multiple thin layer structures in the GaAs-AlAs system using a novel VPE reactor. J. Cryst. Growth 68, 431 (1983)CrossRef M.R. Leys et al., Growth of multiple thin layer structures in the GaAs-AlAs system using a novel VPE reactor. J. Cryst. Growth 68, 431 (1983)CrossRef
59.
go back to reference H. Ishikawa et al., Thermal stability of GaN on (111) Si substrate. J. Cryst. Growth 189–190, 178–182 (1998)CrossRef H. Ishikawa et al., Thermal stability of GaN on (111) Si substrate. J. Cryst. Growth 189–190, 178–182 (1998)CrossRef
60.
go back to reference A. Watanabe et al., The growth of single crystalline GaN on a Si substrate using AlN as an intermediate layer. J. Cryst. Growth 128, 391–396 (1993)CrossRef A. Watanabe et al., The growth of single crystalline GaN on a Si substrate using AlN as an intermediate layer. J. Cryst. Growth 128, 391–396 (1993)CrossRef
61.
go back to reference D. Visalli et al., Experimental and simulation study of breakdown voltage enhancement of AlGaN/GaN heterostructures by Si substrate removal. Appl. Phys. Lett. 97, 113501 (2010)CrossRef D. Visalli et al., Experimental and simulation study of breakdown voltage enhancement of AlGaN/GaN heterostructures by Si substrate removal. Appl. Phys. Lett. 97, 113501 (2010)CrossRef
62.
go back to reference H. Yacoub et al., The effect of the inversion channel at the AlN/Si interface on the vertical breakdown characteristics of GaN-based devices. Semicond. Sci. Technol. 29, 115012 (2014)CrossRef H. Yacoub et al., The effect of the inversion channel at the AlN/Si interface on the vertical breakdown characteristics of GaN-based devices. Semicond. Sci. Technol. 29, 115012 (2014)CrossRef
63.
go back to reference T.T. Luong et al., RF loss mechanisms in GaN-based high-electron-mobility-transistor on silicon: Role of an inversion channel at the AlN/Si interface. Phys. Status Solidi A 214, 1600944 (2017)CrossRef T.T. Luong et al., RF loss mechanisms in GaN-based high-electron-mobility-transistor on silicon: Role of an inversion channel at the AlN/Si interface. Phys. Status Solidi A 214, 1600944 (2017)CrossRef
64.
go back to reference H. Ishikawa et al., GaN on Si with AlGaN/GaN intermediate layer. Jpn. J. Appl. Phys 38, L492–L494 (1999)CrossRef H. Ishikawa et al., GaN on Si with AlGaN/GaN intermediate layer. Jpn. J. Appl. Phys 38, L492–L494 (1999)CrossRef
65.
go back to reference E. Feltin et al., Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 79, 3230 (2001)CrossRef E. Feltin et al., Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 79, 3230 (2001)CrossRef
66.
go back to reference A. Ubukata et al., GaN growth on 150-mm-diameter (111) Si substrates. J. Cryst. Growth 298, 198–201 (2007)CrossRef A. Ubukata et al., GaN growth on 150-mm-diameter (111) Si substrates. J. Cryst. Growth 298, 198–201 (2007)CrossRef
67.
go back to reference A. Reiher, Efficient stress relief in GaN heteroepitaxy on Si(111) using low-temperature AlN interlayers. J. Cryst. Growth 248, 563–567 (2003)CrossRef A. Reiher, Efficient stress relief in GaN heteroepitaxy on Si(111) using low-temperature AlN interlayers. J. Cryst. Growth 248, 563–567 (2003)CrossRef
68.
go back to reference J.W. Matthews, A.E. Blakeslee, Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 27, 118–125 (1974) J.W. Matthews, A.E. Blakeslee, Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 27, 118–125 (1974)
69.
go back to reference K. Cheng et al., AlN/GaN heterostructures grown by metal organic vapor phase epitaxy with in situ Si3N4 passivation. J. Cryst. Growth 315(1), 204–207 (2011)CrossRef K. Cheng et al., AlN/GaN heterostructures grown by metal organic vapor phase epitaxy with in situ Si3N4 passivation. J. Cryst. Growth 315(1), 204–207 (2011)CrossRef
70.
go back to reference F. Medjdoub, Barrier-layer scaling of InAlN/GaN HEMTs. IEEE Electron Device Lett, 29–25 (2008) F. Medjdoub, Barrier-layer scaling of InAlN/GaN HEMTs. IEEE Electron Device Lett, 29–25 (2008)
71.
go back to reference J. Wurfl et al., Device breakdown and dynamic effects in GaN power switching devices: Dependencies on material properties and device design. ECS Trans. 50(3), 211–222 (2013)MathSciNetCrossRef J. Wurfl et al., Device breakdown and dynamic effects in GaN power switching devices: Dependencies on material properties and device design. ECS Trans. 50(3), 211–222 (2013)MathSciNetCrossRef
72.
go back to reference T. Palacios et al., AlGaN/GaN high electron mobility transistors with InGaN back-barriers. IEEE Electron Device Lett, 27–21 (2005) T. Palacios et al., AlGaN/GaN high electron mobility transistors with InGaN back-barriers. IEEE Electron Device Lett, 27–21 (2005)
73.
go back to reference M. Uren et al., Intentionally carbon-doped AlGaN/GaN HEMTs: Necessity for vertical leakage paths. IEEE Electron Device Lett, 35–33 (2014) M. Uren et al., Intentionally carbon-doped AlGaN/GaN HEMTs: Necessity for vertical leakage paths. IEEE Electron Device Lett, 35–33 (2014)
74.
go back to reference J. Ibbetson et al., Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl. Phys. Lett. 77, 250–252 (2000)CrossRef J. Ibbetson et al., Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl. Phys. Lett. 77, 250–252 (2000)CrossRef
75.
go back to reference T.R. Prunty, Passivation of AlGaN/GaN heterostructures with silicon nitride for insulated gate transistors. Proceedings of the 2000 IEEE/Cornell conference on high performance devices, Ithaca, 2000 T.R. Prunty, Passivation of AlGaN/GaN heterostructures with silicon nitride for insulated gate transistors. Proceedings of the 2000 IEEE/Cornell conference on high performance devices, Ithaca, 2000
76.
go back to reference J. Derluyn et al., Improvement of AlGaN/GaN high electron mobility transistor structures by in situ deposition of a Si3N4 surface layer. J. Appl. Phys. 98, 054501 (2005)CrossRef J. Derluyn et al., Improvement of AlGaN/GaN high electron mobility transistor structures by in situ deposition of a Si3N4 surface layer. J. Appl. Phys. 98, 054501 (2005)CrossRef
77.
go back to reference M. Higashiwaki, Effects of SiN passivation by catalytic chemical vapor deposition on electrical properties of AlGaN∕GaN heterostructure field-effect transistors. J. Appl. Phys. 100, 033714 (2006)CrossRef M. Higashiwaki, Effects of SiN passivation by catalytic chemical vapor deposition on electrical properties of AlGaN∕GaN heterostructure field-effect transistors. J. Appl. Phys. 100, 033714 (2006)CrossRef
78.
go back to reference K. Cheng et al., Formation of V-grooves on the (al,Ga)N surface as means of tensile stress relaxation. J. Cryst. Growth 353, 88–94 (2012)CrossRef K. Cheng et al., Formation of V-grooves on the (al,Ga)N surface as means of tensile stress relaxation. J. Cryst. Growth 353, 88–94 (2012)CrossRef
79.
go back to reference F. Medjdoub, GaN-on-Si HEMTs Above 10 W/mm at 2 GHz together with high thermal stability at 325°C. Proceedings of the 5th European Microwave Integrated Circuits Conference, Paris, 27–28 Sept 2010 F. Medjdoub, GaN-on-Si HEMTs Above 10 W/mm at 2 GHz together with high thermal stability at 325°C. Proceedings of the 5th European Microwave Integrated Circuits Conference, Paris, 27–28 Sept 2010
82.
go back to reference S.L. Rumyantsev, M.S. Shur, M.E. Levinshtein, Materials properties of nitrides. Int. J. High Speed Electron Syst 14(1), 1 (2004)CrossRef S.L. Rumyantsev, M.S. Shur, M.E. Levinshtein, Materials properties of nitrides. Int. J. High Speed Electron Syst 14(1), 1 (2004)CrossRef
83.
go back to reference J.-H. Ryou, W. Lee, J. Limb, D. Yoo, J.P. Liu, R.D. Dupuis, Z.H. Wu, A.M. Fischer, F.A. Ponce, Control of quantum-confined stark effect in multiple quantum well active region by -type layer for III-nitride-based visible light emitting diodes. Appl. Phys. Lett. 92, 101113 (2008)CrossRef J.-H. Ryou, W. Lee, J. Limb, D. Yoo, J.P. Liu, R.D. Dupuis, Z.H. Wu, A.M. Fischer, F.A. Ponce, Control of quantum-confined stark effect in multiple quantum well active region by -type layer for III-nitride-based visible light emitting diodes. Appl. Phys. Lett. 92, 101113 (2008)CrossRef
84.
go back to reference M. Leroux, N. Grandjean, M. Laugt, J. Massies, B. Gil, P. Lefebvre, P. BigenwaldM, Quantum confined stark effect due to built-in internal polarization fields in Al,Ga…N/GaN quantum wells. Phys. Rev. B 58(20) (1998)CrossRef M. Leroux, N. Grandjean, M. Laugt, J. Massies, B. Gil, P. Lefebvre, P. BigenwaldM, Quantum confined stark effect due to built-in internal polarization fields in Al,Ga…N/GaN quantum wells. Phys. Rev. B 58(20) (1998)CrossRef
85.
go back to reference W. Udo, Pohl, Epitaxy of Semiconductors: Introduction to Physical Principles (Springer Science & Business Media, 2013) W. Udo, Pohl, Epitaxy of Semiconductors: Introduction to Physical Principles (Springer Science & Business Media, 2013)
Metadata
Title
Taking the Next Step in GaN: Bulk GaN Substrates and GaN-on-Si Epitaxy for Electronics
Authors
Joff Derluyn
Marianne Germain
Elke Meissner
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-77994-2_1