Skip to main content
Top
Published in: Journal of Nanoparticle Research 11/2012

01-11-2012 | Research Paper

Temperature and size dependency of thermal conductivity of aluminum nanocluster

Authors: Farid Taherkhani, Hamed Rezania

Published in: Journal of Nanoparticle Research | Issue 11/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Molecular dynamics simulation has been applied for investigation of coefficient thermal conductivity (CTC) of aluminum nanocluster and its bulk limit via Green–Kubo formalism. The dependence of CTC on size range \( 256 \le N \le 1,372 \) is investigated. Temperature dependence of CTC quantity is considered for aluminum nanocluster and its bulk limit in range \( 300 \le T \le 1,100 \) K. At low temperature, CTC quantity for aluminum nanocluster is greater than its bulk value. Our results regarding the CTC quantity as a function of size and temperature of aluminum nanocluster show that there is a peak in the thermal conductivity. It is worthwhile to notice that trend and the value of our result for CTC quantity in the bulk of aluminum is in agreement with experimental results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272:1924–1925CrossRef Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272:1924–1925CrossRef
go back to reference Alavi S, Thompson DL (2006) Molecular dynamics simulations of the melting of aluminum nanoparticles. J Phys Chem A 110:1518–1523CrossRef Alavi S, Thompson DL (2006) Molecular dynamics simulations of the melting of aluminum nanoparticles. J Phys Chem A 110:1518–1523CrossRef
go back to reference Allen MP, Tildesley DJ (1997) Computer simulation of liquid. Clarendon, Oxford Allen MP, Tildesley DJ (1997) Computer simulation of liquid. Clarendon, Oxford
go back to reference Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77:371–423CrossRef Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77:371–423CrossRef
go back to reference Berber S, Kwon YK, Tománek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 48:4613–4616CrossRef Berber S, Kwon YK, Tománek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 48:4613–4616CrossRef
go back to reference Bond GC (1987) Heterogeneous catalysis, 3rd edn. Oxford University Press, Oxford Bond GC (1987) Heterogeneous catalysis, 3rd edn. Oxford University Press, Oxford
go back to reference Desai TG (2011) Thermal transport in nanoclusters. Appl Phys Lett 98:193107–193109CrossRef Desai TG (2011) Thermal transport in nanoclusters. Appl Phys Lett 98:193107–193109CrossRef
go back to reference Gao JW, Zheng RT, Ohtani H, Zhu DS, Chen G (2009) Experimental investigation of heat conduction mechanisms in nanofluids. Clue on clustering. Nano Lett 9:4128–4132CrossRef Gao JW, Zheng RT, Ohtani H, Zhu DS, Chen G (2009) Experimental investigation of heat conduction mechanisms in nanofluids. Clue on clustering. Nano Lett 9:4128–4132CrossRef
go back to reference Guo X, Wang R, Wang X, Hao J (2004) Effects of preparation method and precipitator on the propylene epoxidation over Ag/TS-1 in the gas phase. Catal Today 211:93–95 Guo X, Wang R, Wang X, Hao J (2004) Effects of preparation method and precipitator on the propylene epoxidation over Ag/TS-1 in the gas phase. Catal Today 211:93–95
go back to reference Jain PK, El-Sayed MA (2010) Plasmonic coupling in noble metal nanostructures. Chem Phys Lett 487:153–164CrossRef Jain PK, El-Sayed MA (2010) Plasmonic coupling in noble metal nanostructures. Chem Phys Lett 487:153–164CrossRef
go back to reference Jensen P (1999) Growth of nanostructures by cluster deposition: experiments and simple models. Rev Mod Phys 71:1695–1735CrossRef Jensen P (1999) Growth of nanostructures by cluster deposition: experiments and simple models. Rev Mod Phys 71:1695–1735CrossRef
go back to reference Johnston RL (1998) The development of metallic behaviour in clusters. Philos Trans R Soc Lond A 356:211–230CrossRef Johnston RL (1998) The development of metallic behaviour in clusters. Philos Trans R Soc Lond A 356:211–230CrossRef
go back to reference Jortner JZ (1992) Cluster size effects. Physica D 24:247–275 Jortner JZ (1992) Cluster size effects. Physica D 24:247–275
go back to reference Kim F, Connor S, Song H, Kuykendall T, Yang PD (2004) Platonic gold nanocrystals. Angew Chem Int Ed 43:3673–3677CrossRef Kim F, Connor S, Song H, Kuykendall T, Yang PD (2004) Platonic gold nanocrystals. Angew Chem Int Ed 43:3673–3677CrossRef
go back to reference Kreibig K, Vollmer M (1995) Optical properties of metal clusters. Springer, New York Kreibig K, Vollmer M (1995) Optical properties of metal clusters. Springer, New York
go back to reference Lei Y, Mehmood F, Lee S, Greeley J, Lee B, Seifert S, Winans RE, Elam JW, Meyer RJ, Redfern PC, Teschner D, Schlögl R, Pellin MJ, Curtiss LA, Vajda S (2010) Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 328:224–228CrossRef Lei Y, Mehmood F, Lee S, Greeley J, Lee B, Seifert S, Winans RE, Elam JW, Meyer RJ, Redfern PC, Teschner D, Schlögl R, Pellin MJ, Curtiss LA, Vajda S (2010) Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 328:224–228CrossRef
go back to reference Lerme J, Bachelier G, Billaud P, Bonnet C, Broyer M, Cottancin E, Marhaba S, Pellarin M (2008) Optical response of a single spherical particle in a tightly focused light beam: application to the spatial modulation spectroscopy technique. J Opt Soc Am A 25:493–514CrossRef Lerme J, Bachelier G, Billaud P, Bonnet C, Broyer M, Cottancin E, Marhaba S, Pellarin M (2008) Optical response of a single spherical particle in a tightly focused light beam: application to the spatial modulation spectroscopy technique. J Opt Soc Am A 25:493–514CrossRef
go back to reference Nose S (1990) Constant-temperature molecular dynamics. J Phys Condens Matter 2:115–119CrossRef Nose S (1990) Constant-temperature molecular dynamics. J Phys Condens Matter 2:115–119CrossRef
go back to reference Noya EG, Doye JPK, Calvo F (2006) Theoretical study of the melting of aluminum clusters. Phys Rev B 73:125407CrossRef Noya EG, Doye JPK, Calvo F (2006) Theoretical study of the melting of aluminum clusters. Phys Rev B 73:125407CrossRef
go back to reference Petroski JM, Wang ZL, Green TC, El-Sayed MA (1998) Kinetically controlled growth and shape formation mechanism of platinum nanoparticles. J Phys Chem B 102:3316–3320CrossRef Petroski JM, Wang ZL, Green TC, El-Sayed MA (1998) Kinetically controlled growth and shape formation mechanism of platinum nanoparticles. J Phys Chem B 102:3316–3320CrossRef
go back to reference Qi Y, Cagin T, Johnson WL, Goddard WA (2001) Melting and crystallization in Ni nanoclusters: the mesoscale regime. J Chem Phys 115:385–394CrossRef Qi Y, Cagin T, Johnson WL, Goddard WA (2001) Melting and crystallization in Ni nanoclusters: the mesoscale regime. J Chem Phys 115:385–394CrossRef
go back to reference Rodriguez LJL, Montejano CJM, Pal U, Sanchez RJF, Troiani HE, García D, Miki-Yoshida M, Jose YM (2004) Surface reconstruction and decahedral structure of bimetallic nanoparticles. Phys Rev Lett 92:196102–196105CrossRef Rodriguez LJL, Montejano CJM, Pal U, Sanchez RJF, Troiani HE, García D, Miki-Yoshida M, Jose YM (2004) Surface reconstruction and decahedral structure of bimetallic nanoparticles. Phys Rev Lett 92:196102–196105CrossRef
go back to reference Sankaranarayanan SKRS, Bhethanabotla VR, Joseph B (2005) Molecular dynamics simulation study of the melting of Pd–Pt nanoclusters. Phys Rev B 71:15–195415CrossRef Sankaranarayanan SKRS, Bhethanabotla VR, Joseph B (2005) Molecular dynamics simulation study of the melting of Pd–Pt nanoclusters. Phys Rev B 71:15–195415CrossRef
go back to reference Schebarchov D, Hendy SC (2007) Thermal instability of decahedral structures in platinum nanoparticles. Eur Phys J D 43:11–14CrossRef Schebarchov D, Hendy SC (2007) Thermal instability of decahedral structures in platinum nanoparticles. Eur Phys J D 43:11–14CrossRef
go back to reference Smith W, Todorov IT (2006) A short description of DL_POLY. Mol Simul 32:935–943CrossRef Smith W, Todorov IT (2006) A short description of DL_POLY. Mol Simul 32:935–943CrossRef
go back to reference Song H, Kim F, Connor S, Somorjai GA, Yang PD (2005) Pt nanocrystals: shape control and Langmuir–Blodgett monolayer formation. J Phys Chem B 109:188–193CrossRef Song H, Kim F, Connor S, Somorjai GA, Yang PD (2005) Pt nanocrystals: shape control and Langmuir–Blodgett monolayer formation. J Phys Chem B 109:188–193CrossRef
go back to reference Sun Y, Xia Y (2000) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179CrossRef Sun Y, Xia Y (2000) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179CrossRef
go back to reference Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316:732–735CrossRef Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316:732–735CrossRef
go back to reference Tretiakov KV, Scandolo S (2004) Thermal conductivity of solid argon from molecular dynamics simulations. J Chem Phys 120:3765–3769CrossRef Tretiakov KV, Scandolo S (2004) Thermal conductivity of solid argon from molecular dynamics simulations. J Chem Phys 120:3765–3769CrossRef
go back to reference Vajda S, Lee S, Sell K, Barke I, Kleibert A, Oeynhausen VV, Meiwes BKH, Rodríguez AF, Elam JW, Pellin MM, Lee B, Seifert S, Winans RE (2009) Combined temperature-programmed reaction and it situ X-ray scattering studies of size-selected silver cluster under realistic reaction conditions in the epoxidation of propene. J Chem Phys 131:121104–121108CrossRef Vajda S, Lee S, Sell K, Barke I, Kleibert A, Oeynhausen VV, Meiwes BKH, Rodríguez AF, Elam JW, Pellin MM, Lee B, Seifert S, Winans RE (2009) Combined temperature-programmed reaction and it situ X-ray scattering studies of size-selected silver cluster under realistic reaction conditions in the epoxidation of propene. J Chem Phys 131:121104–121108CrossRef
go back to reference Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle–fluid mixture. J Thermophys Heat Transf 13:474–480CrossRef Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle–fluid mixture. J Thermophys Heat Transf 13:474–480CrossRef
go back to reference Warrier P, Teja A (2011) Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles. Nanoscale Res Lett 6:247–252CrossRef Warrier P, Teja A (2011) Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles. Nanoscale Res Lett 6:247–252CrossRef
go back to reference Wen YH, Wu SQ, Zhang JH, Zhu ZZ (2008) The elastic behavior in Ni monocrystal: nonlinear effects. Solid State Commun 146:253–257CrossRef Wen YH, Wu SQ, Zhang JH, Zhu ZZ (2008) The elastic behavior in Ni monocrystal: nonlinear effects. Solid State Commun 146:253–257CrossRef
go back to reference Wen Y, Fang H, Zhu Z, Sun S (2009) Molecular dynamics investigation of shape effects on thermal characteristics of platinum nanoparticles. Phys Lett A 373:272–276CrossRef Wen Y, Fang H, Zhu Z, Sun S (2009) Molecular dynamics investigation of shape effects on thermal characteristics of platinum nanoparticles. Phys Lett A 373:272–276CrossRef
go back to reference Yao Z, Wang JS, Li B, Liu GL (2005) Thermal conduction of carbon nanotubes using molecular dynamics. Phys Rev B71:085417–085424 Yao Z, Wang JS, Li B, Liu GL (2005) Thermal conduction of carbon nanotubes using molecular dynamics. Phys Rev B71:085417–085424
Metadata
Title
Temperature and size dependency of thermal conductivity of aluminum nanocluster
Authors
Farid Taherkhani
Hamed Rezania
Publication date
01-11-2012
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 11/2012
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-012-1222-9

Other articles of this Issue 11/2012

Journal of Nanoparticle Research 11/2012 Go to the issue

Premium Partners