Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 5/2017

14-11-2016

Temperature dependence of characteristic parameters of the Au/C20H12/n-Si Schottky barrier diodes (SBDs) in the wide temperature range

Authors: K. Moraki, S. Bengi, S. Zeyrek, M. M. Bülbül, Ş. Altındal

Published in: Journal of Materials Science: Materials in Electronics | Issue 5/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Au/C20H12/n-Si SBD was fabricated and its characteristic parameters such as reverse-saturation current (Io), ideality factor (n), zero-bias barrier height (Φbo), series and shunt resistances (Rs, Rsh) were found as 1.974 × 10−7 A, 6.434, 0.351 eV, 30.22 Ω and 18.96 kΩ at 160 K and 1.061 × 10−6 A, 2.34, 0.836 eV, 5.82 Ω and 24.52 kΩ at 380 K, respectively. While the value of n decreases with increasing temperature, Φbo increases. The change in Φbo with temperature is not agreement with negative temperature coefficient of forbidden band-gap of semiconductor (Si). Thus, Φ bo versus n, Φ bo and (n−1 − 1) versus q/2kT plots were drawn to obtain an evidence of a Gaussian distribution (GD) of the BHs and all of them have a straight line. The mean value of BH (\( \overline{\varPhi }_{bo} \)) was found as 0.983 eV from the intercept of Φ bo versus n plot (for n = 1). Also, the value of \( \overline{\varPhi }_{bo} \) and standard deviation (σs) were found as 1.123 eV and 0.151 V from the slope and intercept of Φbo versus q/2kT plot. By using the modified Richardson plot, the \( \overline{\varPhi }_{bo} \) and Richardson constant (A*) values were obtained as 1.116 eV and 113.44 A cm−2 K−2 from the slope and intercept of this plot, respectively. It is clear that this value of A* (=113.44 A cm−2 K−2) is very close to their theoretical value of 112 A cm−2 K−2 for n-Si. In addition, the energy density distribution profile of surface states (Dit) was obtained from the forward bias I–V data by taking into account the bias dependent of the effective barrier height (Φ e ) and ideality factor n(V) for four different temperatures (160, 200, 300, and 380 K). In conclusion, the I–V–T measurements of the Au/C20H12/n-Si SBD in the whole temperature range can be successfully explained on the basis of thermionic emission (TE) theory with GD of the BHs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981) S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)
2.
go back to reference E.H. Rhoderick, Metal–Semiconductor Contacts (Oxford University Press, London, 1978) E.H. Rhoderick, Metal–Semiconductor Contacts (Oxford University Press, London, 1978)
3.
go back to reference B.L. Sharma, Metal–Semiconductor Schottky Barrier Junctions and their Applications (Plenum Press, New York, 1984)CrossRef B.L. Sharma, Metal–Semiconductor Schottky Barrier Junctions and their Applications (Plenum Press, New York, 1984)CrossRef
7.
go back to reference E. Özavcı, S. Demirezen, U. Aydemir, Ş. Altındal, Sens. Actuat. A Phys. 194, 259 (2013)CrossRef E. Özavcı, S. Demirezen, U. Aydemir, Ş. Altındal, Sens. Actuat. A Phys. 194, 259 (2013)CrossRef
8.
go back to reference M.S.P. Reddy, H.S. Kang, J.H. Lee, V.R. Reddy, J.S. Jang, J. Appl. Polym. Sci. 131, 39773 (2014) M.S.P. Reddy, H.S. Kang, J.H. Lee, V.R. Reddy, J.S. Jang, J. Appl. Polym. Sci. 131, 39773 (2014)
9.
go back to reference Y.P. Song, R.L. Meirhaeghe, W.H. Laflere, F. Cardon, Solid-State Electron. 29, 633 (1986)CrossRef Y.P. Song, R.L. Meirhaeghe, W.H. Laflere, F. Cardon, Solid-State Electron. 29, 633 (1986)CrossRef
10.
go back to reference A. Sarıyıldız, Ö. Vural, M. Evecen, Ş. Altındal, J. Mater. Sci. Mater. Electron. 25, 4391 (2014)CrossRef A. Sarıyıldız, Ö. Vural, M. Evecen, Ş. Altındal, J. Mater. Sci. Mater. Electron. 25, 4391 (2014)CrossRef
11.
go back to reference S. Altındal, B. Sarı, H.I. Unal, N. Yavas, J. Appl. Polym. Sci. 113, 2955 (2009)CrossRef S. Altındal, B. Sarı, H.I. Unal, N. Yavas, J. Appl. Polym. Sci. 113, 2955 (2009)CrossRef
12.
go back to reference M.M. Bülbül, S. Bengi, İ. Dökme, Ş. Altındal, T. Tunç, J. Appl. Phys. 108, 034517 (2010)CrossRef M.M. Bülbül, S. Bengi, İ. Dökme, Ş. Altındal, T. Tunç, J. Appl. Phys. 108, 034517 (2010)CrossRef
13.
17.
go back to reference V. Janardhanam, I. Jyothi, K.S. Ahn, C.J. Choi, Thin Solid Films 546, 63 (2013)CrossRef V. Janardhanam, I. Jyothi, K.S. Ahn, C.J. Choi, Thin Solid Films 546, 63 (2013)CrossRef
18.
19.
go back to reference B.H. Lee, Y. Jeon, K. Zawadzki, W.J. Qi, J. Lee, Appl. Phys. Lett. 74, 3143 (1999)CrossRef B.H. Lee, Y. Jeon, K. Zawadzki, W.J. Qi, J. Lee, Appl. Phys. Lett. 74, 3143 (1999)CrossRef
22.
go back to reference R.F. Schmitsdrof, T.U. Kampen, W. Mönch, J. Vac. Sci. Technol. B 15, 1221 (1997)CrossRef R.F. Schmitsdrof, T.U. Kampen, W. Mönch, J. Vac. Sci. Technol. B 15, 1221 (1997)CrossRef
26.
go back to reference R.A. Cormier, B.A. Gregg, J. Phys. Chem. B 101(1997), 11004–11006 (1006) R.A. Cormier, B.A. Gregg, J. Phys. Chem. B 101(1997), 11004–11006 (1006)
27.
go back to reference P. Pösch, M. Thelakkat, H.-W. Shchmidt, Synth. Met. 102, 1110–1112 (1999)CrossRef P. Pösch, M. Thelakkat, H.-W. Shchmidt, Synth. Met. 102, 1110–1112 (1999)CrossRef
28.
go back to reference N. Şimşek, H. Şafak, Ö.F. Yüksel, M. Kuş, Curr. Appl. Phys. 12, 1510–1514 (2012)CrossRef N. Şimşek, H. Şafak, Ö.F. Yüksel, M. Kuş, Curr. Appl. Phys. 12, 1510–1514 (2012)CrossRef
29.
go back to reference V.R. Reddy, V. Janardhanam, C.H. Leem, C.J. Choi, Superlattices Microstruct. 67, 242–255 (2014)CrossRef V.R. Reddy, V. Janardhanam, C.H. Leem, C.J. Choi, Superlattices Microstruct. 67, 242–255 (2014)CrossRef
30.
31.
go back to reference H. Tecimer, A. Türüt, H. Uslu, Ş. Altındal, İ. Uslu, Sens. Actuat. A Phys. 199, 194 (2013)CrossRef H. Tecimer, A. Türüt, H. Uslu, Ş. Altındal, İ. Uslu, Sens. Actuat. A Phys. 199, 194 (2013)CrossRef
32.
go back to reference S. Toumi, A.F. Hamida, L. Boussouar, A. Sellai, Z. Ouennoughi, H. Ryssel, Microelectron. Eng. 88, 303 (2009)CrossRef S. Toumi, A.F. Hamida, L. Boussouar, A. Sellai, Z. Ouennoughi, H. Ryssel, Microelectron. Eng. 88, 303 (2009)CrossRef
33.
go back to reference J.H. Evens-Freeman, M.M. El-Nahass, A.A.M. Farag, A. Elhaji, Microelectron. Eng. 88, 3353 (2011)CrossRef J.H. Evens-Freeman, M.M. El-Nahass, A.A.M. Farag, A. Elhaji, Microelectron. Eng. 88, 3353 (2011)CrossRef
34.
35.
go back to reference S. Alialy, Ş. Altındal, E.E. Tanrıkulu, D.E. Yıldız, J. Appl. Phys. 116, 083709 (2014)CrossRef S. Alialy, Ş. Altındal, E.E. Tanrıkulu, D.E. Yıldız, J. Appl. Phys. 116, 083709 (2014)CrossRef
36.
37.
go back to reference J.P. Sullivan, R.T. Tung, M.R. Pinto, W.R. Graham, J. Appl. Phys. 70, 7403 (1991)CrossRef J.P. Sullivan, R.T. Tung, M.R. Pinto, W.R. Graham, J. Appl. Phys. 70, 7403 (1991)CrossRef
39.
go back to reference H.G. Çetinkaya, D.E. Yıldız, Ş. Altındal, Int. J. Mod. Phys. B 29, 1450237 (2015)CrossRef H.G. Çetinkaya, D.E. Yıldız, Ş. Altındal, Int. J. Mod. Phys. B 29, 1450237 (2015)CrossRef
40.
go back to reference E.H. Nicollian, J.R. Brews, Metal Oxide Semiconductor (MOS) Physics and Technology (Willey, New York, 1982) E.H. Nicollian, J.R. Brews, Metal Oxide Semiconductor (MOS) Physics and Technology (Willey, New York, 1982)
Metadata
Title
Temperature dependence of characteristic parameters of the Au/C20H12/n-Si Schottky barrier diodes (SBDs) in the wide temperature range
Authors
K. Moraki
S. Bengi
S. Zeyrek
M. M. Bülbül
Ş. Altındal
Publication date
14-11-2016
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 5/2017
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-6011-2

Other articles of this Issue 5/2017

Journal of Materials Science: Materials in Electronics 5/2017 Go to the issue