Skip to main content
Top
Published in: Physics of Metals and Metallography 5/2020

01-05-2020 | ELECTRICAL AND MAGNETIC PROPERTIES

Temperature Dependence of Magnetoimpedance Effect of a Composite Wire with Induced Magnetic Anisotropy

Authors: A. A. Moiseev, D. A. Bukreev, M. S. Derevyanko, V. O. Kudryavtsev, A. Larrãnaga, G. V. Kurlyandskaya, A. V. Semirov

Published in: Physics of Metals and Metallography | Issue 5/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Peculiarities of the structure, magnetic properties, and temperature dependence of magnetoimpedance effect of a Fe20Co6Ni74/Cu98Be2 composite wire with the induced axial magnetic anisotropy are studied in this work. The increase in the temperature in a range from 150 to 450 K is shown to lead to an increase in the magnetoimpedance effect. To explain the experimental results, a model is proposed, which takes temperature variations of the magnetization and magnetic anisotropy constant of the Fe20Co6Ni74 magnetic layer into account.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference L. D. Landau and E. M. Lifshits, Electrodynamics of Continuos Media (Pergamon, New York, 1960; Nauka, Moscow, 1982). L. D. Landau and E. M. Lifshits, Electrodynamics of Continuos Media (Pergamon, New York, 1960; Nauka, Moscow, 1982).
2.
go back to reference A. S. Antonov, S. N. Gadetskii, A. B. Granovskii, A. L. D’yachkov, V. P. Paramonov, N. S. Perov, A. F. Prokoshin, N. A. Usov, and A. N. Lagar’kov, “Giant magnetoimpedance in amorphous and nanocrystalline multilayers,” Phys. Met. Metallogr. 83, 612–618 (1997). A. S. Antonov, S. N. Gadetskii, A. B. Granovskii, A. L. D’yachkov, V. P. Paramonov, N. S. Perov, A. F. Prokoshin, N. A. Usov, and A. N. Lagar’kov, “Giant magnetoimpedance in amorphous and nanocrystalline multilayers,” Phys. Met. Metallogr. 83, 612–618 (1997).
3.
go back to reference L. V. Panina and K. Mohri, “Magneto-impedance effect in amorphous wires,” Appl. Phys. Lett. 65, 1189–1191 (1994).CrossRef L. V. Panina and K. Mohri, “Magneto-impedance effect in amorphous wires,” Appl. Phys. Lett. 65, 1189–1191 (1994).CrossRef
4.
go back to reference R. S. Beach and A. E. Berkowitz, “Giant magnetic field dependent impedance of amorphous FeCoSiB wire,” Appl. Phys. Lett. 64, 3652–3654 (1994).CrossRef R. S. Beach and A. E. Berkowitz, “Giant magnetic field dependent impedance of amorphous FeCoSiB wire,” Appl. Phys. Lett. 64, 3652–3654 (1994).CrossRef
5.
go back to reference M. Knobel, M. L. Sanchez, J. Velazquez, and M. Vazquez, “Stress dependence of the giant magneto-impedance effect in amorphous wires,” J. Phys.: Condens. Matter. 7, 115–120 (1995). M. Knobel, M. L. Sanchez, J. Velazquez, and M. Vazquez, “Stress dependence of the giant magneto-impedance effect in amorphous wires,” J. Phys.: Condens. Matter. 7, 115–120 (1995).
6.
go back to reference H. Chiriac, C. Sandrino Marinescu, and T.-A. Óvári, “Temperature dependence of the magneto-impedance effect in Co-rich amorphous glass-covered wires,” J. Magn. Magn. Mater. 215–216, 539–541 (2000).CrossRef H. Chiriac, C. Sandrino Marinescu, and T.-A. Óvári, “Temperature dependence of the magneto-impedance effect in Co-rich amorphous glass-covered wires,” J. Magn. Magn. Mater. 215–216, 539–541 (2000).CrossRef
7.
go back to reference A. V. Semirov, D. A. Bukreev, A. A. Moiseev, V. A. Lukshina, E. G. Volkova, S. O. Volchkov, and G. V. Kurlyandskaya, “Temperature dependence of the magnetic properties and magnetoimpedance of nanocrystalline Fe73.5Si16.5B6Nb3Cu1 ribbons,” Tech. Phys. 56, 395–399 (2011).CrossRef A. V. Semirov, D. A. Bukreev, A. A. Moiseev, V. A. Lukshina, E. G. Volkova, S. O. Volchkov, and G. V. Kurlyandskaya, “Temperature dependence of the magnetic properties and magnetoimpedance of nanocrystalline Fe73.5Si16.5B6Nb3Cu1 ribbons,” Tech. Phys. 56, 395–399 (2011).CrossRef
8.
go back to reference A. V. Semirov, M. S. Derevyanko, D. A. Bukreev, A. A. Moiseev, and G. V. Kurlyandskaya, “Impedance and magnetic properties of CoFeCrSiB amorphous ribbons near the Curie point,” Tech. Phys. 58, 774–777 (2013).CrossRef A. V. Semirov, M. S. Derevyanko, D. A. Bukreev, A. A. Moiseev, and G. V. Kurlyandskaya, “Impedance and magnetic properties of CoFeCrSiB amorphous ribbons near the Curie point,” Tech. Phys. 58, 774–777 (2013).CrossRef
9.
go back to reference D. A. Bukreev, A. A. Moiseev, M. S. Derevyanko, and A. V. Semirov, “High-frequency electric properties of amorphous soft magnetic cobalt-based alloys in the region of transition to the paramagnetic state,” Russ. Phys. J. 58, 141–145 (2015).CrossRef D. A. Bukreev, A. A. Moiseev, M. S. Derevyanko, and A. V. Semirov, “High-frequency electric properties of amorphous soft magnetic cobalt-based alloys in the region of transition to the paramagnetic state,” Russ. Phys. J. 58, 141–145 (2015).CrossRef
10.
go back to reference S. O. Volchkov, M. A. Cerdeira, V. V. Gubernatorov, E. I. Duhan, A. P. Potapov, and V. A. Lukshina, “Effects of slight plastic deformation on magnetic properties and giant magnetoimpedance of FeCoCrSiB amorphous ribbons,” Chin. Phys. Lett. 24, 1357–1360 (2007).CrossRef S. O. Volchkov, M. A. Cerdeira, V. V. Gubernatorov, E. I. Duhan, A. P. Potapov, and V. A. Lukshina, “Effects of slight plastic deformation on magnetic properties and giant magnetoimpedance of FeCoCrSiB amorphous ribbons,” Chin. Phys. Lett. 24, 1357–1360 (2007).CrossRef
11.
go back to reference E. V. Golubeva, E. A. Stepanova, K. G. Balymov, S. O. Volchkov, and G. V. Kurlyandskaya, “Magnetic properties and the giant magnetoimpedance of amorphous Co-based wires with a carbon coating,” Phys. Met. Metallogr. 119, 324–331 (2018).CrossRef E. V. Golubeva, E. A. Stepanova, K. G. Balymov, S. O. Volchkov, and G. V. Kurlyandskaya, “Magnetic properties and the giant magnetoimpedance of amorphous Co-based wires with a carbon coating,” Phys. Met. Metallogr. 119, 324–331 (2018).CrossRef
12.
go back to reference R. L. Sommer and C. L. Chien, “Role of magnetic anisotropy in the magnetoimpedance effect in amorphous alloys,” Appl. Phys. Lett. 67, 857–859 (1995).CrossRef R. L. Sommer and C. L. Chien, “Role of magnetic anisotropy in the magnetoimpedance effect in amorphous alloys,” Appl. Phys. Lett. 67, 857–859 (1995).CrossRef
13.
go back to reference A. V. Semirov, D. A. Bukreev, A. A. Moiseev, V. A. Lukshina, E. G. Volkova, and S. O. Volchkov, “Influence of the special features of the effective magnetic anisotropy on the temperature dependences of the magnetoimpedance of nanocrystalline Fe73.5Si16.5B6Nb3Cu1 strips,” Russ. Phys. J. 54, 612–618 (2011).CrossRef A. V. Semirov, D. A. Bukreev, A. A. Moiseev, V. A. Lukshina, E. G. Volkova, and S. O. Volchkov, “Influence of the special features of the effective magnetic anisotropy on the temperature dependences of the magnetoimpedance of nanocrystalline Fe73.5Si16.5B6Nb3Cu1 strips,” Russ. Phys. J. 54, 612–618 (2011).CrossRef
14.
go back to reference R. S. Beach, N. Smith, C. L. Platt, F. Jeffers, and A. E. Berkowitz, “Magneto-impedance effect in NiFe plated wire,” Appl. Phys. Lett. 68, 2753–2755 (1996).CrossRef R. S. Beach, N. Smith, C. L. Platt, F. Jeffers, and A. E. Berkowitz, “Magneto-impedance effect in NiFe plated wire,” Appl. Phys. Lett. 68, 2753–2755 (1996).CrossRef
15.
go back to reference A. S. Antonov, N. A. Buznikov, A. F. Prokoshin, A. L. Rakhmanov, I. T. Iakubov, and A. M. Yakunin, “Nonlinear magnetization reversal in copper-permalloy composite wires induced by a high-frequency current,” Tech. Phys. Lett. 27, 313–315 (2001).CrossRef A. S. Antonov, N. A. Buznikov, A. F. Prokoshin, A. L. Rakhmanov, I. T. Iakubov, and A. M. Yakunin, “Nonlinear magnetization reversal in copper-permalloy composite wires induced by a high-frequency current,” Tech. Phys. Lett. 27, 313–315 (2001).CrossRef
16.
go back to reference G. Kurlyandskaya, H. García-Miquel, M. Vázquez, A. Svalov, and V. Vas’kovskiy, “Longitudinal magnetic bistability of electroplated wires,” J. Magn. Magn. Mater. 249, 34–38 (2002).CrossRef G. Kurlyandskaya, H. García-Miquel, M. Vázquez, A. Svalov, and V. Vas’kovskiy, “Longitudinal magnetic bistability of electroplated wires,” J. Magn. Magn. Mater. 249, 34–38 (2002).CrossRef
17.
go back to reference G. V. Kurlyandskaya, R. El Kammouni, S. O. Volchkov, S. V. Shcherbinin, and A. Larranaga, “Magnetoimpedance sensitive elements based on CuBe/FeCoNi electroplated wires in single and double wire configurations,” IEEE Trans. Magn. 53, 4, 7604104. (2017).CrossRef G. V. Kurlyandskaya, R. El Kammouni, S. O. Volchkov, S. V. Shcherbinin, and A. Larranaga, “Magnetoimpedance sensitive elements based on CuBe/FeCoNi electroplated wires in single and double wire configurations,” IEEE Trans. Magn. 53, 4, 7604104. (2017).CrossRef
18.
go back to reference D. L. Chen, X. Li, H. L. Pan, H. Y. Luan, and Z. J. Zhao, “Magneto-impedance effect of composite wires prepared by chemical plating under DC current,” Nano-Micro Lett. 6, 227–232 (2014).CrossRef D. L. Chen, X. Li, H. L. Pan, H. Y. Luan, and Z. J. Zhao, “Magneto-impedance effect of composite wires prepared by chemical plating under DC current,” Nano-Micro Lett. 6, 227–232 (2014).CrossRef
19.
go back to reference A. C. Mishra, “Microstructure, magnetic and magnetoimpedance properties in electrodeposited NiFe/Cu and CoNiFe/Cu wire with thiourea additive in plating bath,” Phys. B 407, 923–934 (2012).CrossRef A. C. Mishra, “Microstructure, magnetic and magnetoimpedance properties in electrodeposited NiFe/Cu and CoNiFe/Cu wire with thiourea additive in plating bath,” Phys. B 407, 923–934 (2012).CrossRef
20.
go back to reference D. García, G. V. Kurlyandskaya, M. Vázquez, F. I. Toth, and L. K. Varga, “Influence of field annealing on the hysteretic behaviour of the giant magneto-impedance effect of Cu wires covered with Ni80Fe20 outer shells,” J. Magn. Magn. Mater. 203, 208–210 (1999).CrossRef D. García, G. V. Kurlyandskaya, M. Vázquez, F. I. Toth, and L. K. Varga, “Influence of field annealing on the hysteretic behaviour of the giant magneto-impedance effect of Cu wires covered with Ni80Fe20 outer shells,” J. Magn. Magn. Mater. 203, 208–210 (1999).CrossRef
21.
go back to reference G. V. Kurlyandskaya, N. G. Bebenin, and V. O. Vas’kovskii, “Giant magnetic impedance of wires with a thin magnetic coating,” Phys. Met. Metallogr. 111, 133–154 (2011).CrossRef G. V. Kurlyandskaya, N. G. Bebenin, and V. O. Vas’kovskii, “Giant magnetic impedance of wires with a thin magnetic coating,” Phys. Met. Metallogr. 111, 133–154 (2011).CrossRef
22.
go back to reference A. V. Semirov, A. A. Moiseev, D. A. Bukreev, V. O. Kudryavtsev, A. A. Gavrilyuk, G. V. Zakharov, and M. S. Derevyanko,“ Automated measuring complex for magnetic impedance spectroscopy of soft magnetic materials,” Nauch. Pribostr. 20, 42–45 (2010). A. V. Semirov, A. A. Moiseev, D. A. Bukreev, V. O. Kudryavtsev, A. A. Gavrilyuk, G. V. Zakharov, and M. S. Derevyanko,“ Automated measuring complex for magnetic impedance spectroscopy of soft magnetic materials,” Nauch. Pribostr. 20, 42–45 (2010).
23.
go back to reference L. Kraus, “GMI modeling and material optimization,” Sens. Actuators, A 106, 187–194 (2003).CrossRef L. Kraus, “GMI modeling and material optimization,” Sens. Actuators, A 106, 187–194 (2003).CrossRef
24.
go back to reference E. C. Stoner and E. P. Wohlfarth, “A mechanism of magnetic hysteresis in heterogeneous alloys,” Philos. Trans. R. Soc., A 240, 599–642 (1948). E. C. Stoner and E. P. Wohlfarth, “A mechanism of magnetic hysteresis in heterogeneous alloys,” Philos. Trans. R. Soc., A 240, 599–642 (1948).
25.
go back to reference F. Bloch, “Zur Theorie des Ferromagnetismus,” Z. Phys. 61, 206–219 (1930). F. Bloch, “Zur Theorie des Ferromagnetismus,” Z. Phys. 61, 206–219 (1930).
26.
go back to reference A. G. Lesnik, Induced Magnetic Anisotropy (Naukova Dumka, Kiev, 1976) [in Russian]. A. G. Lesnik, Induced Magnetic Anisotropy (Naukova Dumka, Kiev, 1976) [in Russian].
Metadata
Title
Temperature Dependence of Magnetoimpedance Effect of a Composite Wire with Induced Magnetic Anisotropy
Authors
A. A. Moiseev
D. A. Bukreev
M. S. Derevyanko
V. O. Kudryavtsev
A. Larrãnaga
G. V. Kurlyandskaya
A. V. Semirov
Publication date
01-05-2020
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 5/2020
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20050087

Other articles of this Issue 5/2020

Physics of Metals and Metallography 5/2020 Go to the issue