Skip to main content
Top
Published in: Metallography, Microstructure, and Analysis 3/2023

23-03-2023 | Peer-Reviewed Paper

Texture and Tensile Properties of Three-Layered Titanium Clad–AZ31 Magnesium Alloy Sheet by Single-Pass Hot Rolling

Author: Baleegh Alobaid

Published in: Metallography, Microstructure, and Analysis | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present study, a three-layered Ti/AZ31/Ti clad sheet was produced by single-pass hot rolling. Metallurgical bonding between Ti and AZ31 was successfully achieved with a reduction of thickness 38% (sheet I) and 50% (sheet II). The microstructure and mechanical behavior were analyzed using optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), nanoindentation, and tensile tests. The AZ31 layer in sheets I and II exhibited microstructures of shear bands and tensile twins \(\left\{ {10\overline{1}2} \right\}\langle 10\overline{1}1\rangle\). The shear bands acted as local strain concentration areas which led to the failure of the clad sheets with limited elongation. Heat treatment caused changes in the microstructure and mechanical properties of clad sheets due to static recrystallization (SRX) on twins and shear bands in the AZ31 layer. Recrystallized grains usually randomize the texture which led to weaken the strong deformed (0001) basal texture. Twins served as nucleation sites for grain growth during SRX. Tensile tests at room temperature showed significantly improved ductility of the clad sheets after heat treatment at 400 °C for 12 h. The results showed that the mechanical properties of clad sheet II are better than clad sheet I: Clad sheet II shows elongation 13% and 35% along the rolling direction (RD) for as-rolled and annealed clad sheet, respectively, whereas clad sheet I shows elongation 10% and 22% along RD for as-rolled and annealed clad sheet, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Chang et al., Texture evolution of the Mg/Al laminated composite fabricated by the accumulative roll bonding. Scripta Mater. 61(7), 717–720 (2009)CrossRef H. Chang et al., Texture evolution of the Mg/Al laminated composite fabricated by the accumulative roll bonding. Scripta Mater. 61(7), 717–720 (2009)CrossRef
2.
go back to reference R.N. Dehsorkhi, F. Qods, M. Tajally, Investigation on microstructure and mechanical properties of Al–Zn composite during accumulative roll bonding (ARB) process. Mater. Sci. Eng. A. 530, 63–72 (2011)CrossRef R.N. Dehsorkhi, F. Qods, M. Tajally, Investigation on microstructure and mechanical properties of Al–Zn composite during accumulative roll bonding (ARB) process. Mater. Sci. Eng. A. 530, 63–72 (2011)CrossRef
3.
go back to reference M.M. Mahdavian, L. Ghalandari, M. Reihanian, Accumulative roll bonding of multilayered Cu/Zn/Al: an evaluation of microstructure and mechanical properties. Mater. Sci. Eng. A. 579, 99–107 (2013)CrossRef M.M. Mahdavian, L. Ghalandari, M. Reihanian, Accumulative roll bonding of multilayered Cu/Zn/Al: an evaluation of microstructure and mechanical properties. Mater. Sci. Eng. A. 579, 99–107 (2013)CrossRef
4.
go back to reference A. Mozaffari, H. Danesh Manesh, K. Janghorban, Evaluation of mechanical properties and structure of multilayered Al/Ni composites produced by accumulative roll bonding (ARB) process. J. Alloys Compd. 489(1), 103–109 (2010)CrossRef A. Mozaffari, H. Danesh Manesh, K. Janghorban, Evaluation of mechanical properties and structure of multilayered Al/Ni composites produced by accumulative roll bonding (ARB) process. J. Alloys Compd. 489(1), 103–109 (2010)CrossRef
5.
go back to reference L.Y. Sheng, F. Yang, T.F. Xi, C. Lai, H.Q. Ye, Influence of heat treatment on interface of Cu/Al bimetal composite fabricated by cold rolling. Compos. Part B Eng. 42(6), 1468–1473 (2011)CrossRef L.Y. Sheng, F. Yang, T.F. Xi, C. Lai, H.Q. Ye, Influence of heat treatment on interface of Cu/Al bimetal composite fabricated by cold rolling. Compos. Part B Eng. 42(6), 1468–1473 (2011)CrossRef
6.
go back to reference H. Nie et al., The microstructure, texture and mechanical properties of the rolled Al/Mg/Al clad sheets. J. Mater. Eng. Perform. 25(11), 4695–4705 (2016)CrossRef H. Nie et al., The microstructure, texture and mechanical properties of the rolled Al/Mg/Al clad sheets. J. Mater. Eng. Perform. 25(11), 4695–4705 (2016)CrossRef
7.
go back to reference J.-S. Kim et al., Improvement of interfacial bonding strength in roll-bonded Mg/Al clad sheets through annealing and secondary rolling process. Mater. Sci. Eng. A. 628, 1–10 (2015)CrossRef J.-S. Kim et al., Improvement of interfacial bonding strength in roll-bonded Mg/Al clad sheets through annealing and secondary rolling process. Mater. Sci. Eng. A. 628, 1–10 (2015)CrossRef
8.
go back to reference A. Çetin et al., Laminated metal composites by infiltration. Metall. Mater. Trans. A. 42(11), 3509–3520 (2011)CrossRef A. Çetin et al., Laminated metal composites by infiltration. Metall. Mater. Trans. A. 42(11), 3509–3520 (2011)CrossRef
9.
go back to reference H. Inoue, M. Ishio, T. Takasugi, Texture, tensile properties and press formability of Mg–3Al–1Zn/Ti clad sheets produced by roll-bonding. Mater. Sci. Forum. 495–497, 645–650 (2005)CrossRef H. Inoue, M. Ishio, T. Takasugi, Texture, tensile properties and press formability of Mg–3Al–1Zn/Ti clad sheets produced by roll-bonding. Mater. Sci. Forum. 495–497, 645–650 (2005)CrossRef
10.
go back to reference Inoue, H., Mechanical Properties and Formability of Titanium-Clad Magnesium Alloy Sheets. In: Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing (Springer, Cham, 2013), p. 1109–1114. Inoue, H., Mechanical Properties and Formability of Titanium-Clad Magnesium Alloy Sheets. In: Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing (Springer, Cham, 2013), p. 1109–1114.
11.
go back to reference B. Alobaid, F. Yang, Y.-T. Cheng, Microstructure and deformation behavior of hot-rolled AZ31/Ti multilayers. Mater. Res. Express. 6(8), 0865a2 (2019)CrossRef B. Alobaid, F. Yang, Y.-T. Cheng, Microstructure and deformation behavior of hot-rolled AZ31/Ti multilayers. Mater. Res. Express. 6(8), 0865a2 (2019)CrossRef
12.
go back to reference H. Kawamoto et al., Analysis of strain transfer through the Mg/Ti interface using crystallographic orientation analysis based on electron back-scattered diffraction patterns. Mater. Trans. 49(5), 1107–1111 (2008)CrossRef H. Kawamoto et al., Analysis of strain transfer through the Mg/Ti interface using crystallographic orientation analysis based on electron back-scattered diffraction patterns. Mater. Trans. 49(5), 1107–1111 (2008)CrossRef
13.
go back to reference B. Alobaid, Microstructure and mechanical properties of Ti particles reinforced AZ31–Mg alloy matrix composites through ARB and subsequent annealing. Metallogr. Microstruct. Anal. 11, 761–773 (2022)CrossRef B. Alobaid, Microstructure and mechanical properties of Ti particles reinforced AZ31–Mg alloy matrix composites through ARB and subsequent annealing. Metallogr. Microstruct. Anal. 11, 761–773 (2022)CrossRef
14.
go back to reference H.S. Liu, B. Zhang, G.P. Zhang, Microstructures and mechanical properties of Al/Mg alloy multilayered composites produced by accumulative roll bonding. J. Mater. Sci. Technol. 27(1), 15–21 (2011)CrossRef H.S. Liu, B. Zhang, G.P. Zhang, Microstructures and mechanical properties of Al/Mg alloy multilayered composites produced by accumulative roll bonding. J. Mater. Sci. Technol. 27(1), 15–21 (2011)CrossRef
15.
go back to reference A.A.K. Ozgur Duygulu, G. Oktay, F.C. Sahin, Diffusion bonding of magnesium, zirconium and titanium as implant material. Mater. Sci. Forum. 546(549), 417–420 (2007)CrossRef A.A.K. Ozgur Duygulu, G. Oktay, F.C. Sahin, Diffusion bonding of magnesium, zirconium and titanium as implant material. Mater. Sci. Forum. 546(549), 417–420 (2007)CrossRef
16.
go back to reference Y. Wei et al., Formation process of the bonding joint in Ti/Al diffusion bonding. Mater. Sci. Eng. A. 480(1–2), 456–463 (2008)CrossRef Y. Wei et al., Formation process of the bonding joint in Ti/Al diffusion bonding. Mater. Sci. Eng. A. 480(1–2), 456–463 (2008)CrossRef
17.
go back to reference C. Liu et al., Polishing-assisted galvanic corrosion in the dissimilar friction stir welded joint of AZ31 magnesium alloy to 2024 aluminum alloy. Mater. Charact. 60(5), 370–376 (2009)CrossRef C. Liu et al., Polishing-assisted galvanic corrosion in the dissimilar friction stir welded joint of AZ31 magnesium alloy to 2024 aluminum alloy. Mater. Charact. 60(5), 370–376 (2009)CrossRef
18.
go back to reference M. Aonuma, K. Nakata, Effect of alloying elements on interface microstructure of Mg–Al–Zn magnesium alloys and titanium joint by friction stir welding. Mater. Sci. Eng. B. 161(1–3), 46–49 (2009)CrossRef M. Aonuma, K. Nakata, Effect of alloying elements on interface microstructure of Mg–Al–Zn magnesium alloys and titanium joint by friction stir welding. Mater. Sci. Eng. B. 161(1–3), 46–49 (2009)CrossRef
19.
go back to reference L. Commin et al., Friction stir welding of AZ31 magnesium alloy rolled sheets: influence of processing parameters. Acta Mater. 57(2), 326–334 (2009)CrossRef L. Commin et al., Friction stir welding of AZ31 magnesium alloy rolled sheets: influence of processing parameters. Acta Mater. 57(2), 326–334 (2009)CrossRef
20.
go back to reference L. Liu, D. Ren, F. Liu, A review of dissimilar welding techniques for magnesium alloys to aluminum alloys. Materials. 7(5), 3735–3757 (2014)CrossRef L. Liu, D. Ren, F. Liu, A review of dissimilar welding techniques for magnesium alloys to aluminum alloys. Materials. 7(5), 3735–3757 (2014)CrossRef
21.
go back to reference C. Tan et al., Microstructure and mechanical properties of laser welded-brazed Mg/Ti joints with AZ91 Mg based filler. Mater. Des. 99, 127–134 (2016)CrossRef C. Tan et al., Microstructure and mechanical properties of laser welded-brazed Mg/Ti joints with AZ91 Mg based filler. Mater. Des. 99, 127–134 (2016)CrossRef
22.
go back to reference I. Topic, H.W. Höppel, M. Göken, Friction stir welding of accumulative roll-bonded commercial-purity aluminium AA1050 and aluminium alloy AA6016. Mater. Sci. Eng. A. 503(1–2), 163–166 (2009)CrossRef I. Topic, H.W. Höppel, M. Göken, Friction stir welding of accumulative roll-bonded commercial-purity aluminium AA1050 and aluminium alloy AA6016. Mater. Sci. Eng. A. 503(1–2), 163–166 (2009)CrossRef
23.
go back to reference C. Xu et al., Tungsten inert gas welding-brazing of AZ31B magnesium alloy to TC4 titanium alloy. J. Mater. Sci. Technol. 32(2), 167–171 (2016)CrossRef C. Xu et al., Tungsten inert gas welding-brazing of AZ31B magnesium alloy to TC4 titanium alloy. J. Mater. Sci. Technol. 32(2), 167–171 (2016)CrossRef
24.
go back to reference H. Nie et al., Texture evolution of single-pass hot-rolled 5052/AZ31/5052 clad sheets. Jom. 68(8), 2274–2287 (2016)CrossRef H. Nie et al., Texture evolution of single-pass hot-rolled 5052/AZ31/5052 clad sheets. Jom. 68(8), 2274–2287 (2016)CrossRef
25.
go back to reference A. Yahiro, T. Masui, T. Yoshida, Development of nonferrous clad plate and sheet by warm rolling with different temperature of materials. ISIJ Int. 31(6), 647–654 (1991)CrossRef A. Yahiro, T. Masui, T. Yoshida, Development of nonferrous clad plate and sheet by warm rolling with different temperature of materials. ISIJ Int. 31(6), 647–654 (1991)CrossRef
26.
go back to reference B. Feng et al., On the rule of mixtures for bimetal composites. Mater. Sci. Eng. A. 704, 173–180 (2017)CrossRef B. Feng et al., On the rule of mixtures for bimetal composites. Mater. Sci. Eng. A. 704, 173–180 (2017)CrossRef
27.
go back to reference L. Li, K. Nagai, F. Yin, Progress in cold roll bonding of metals. Sci. Technol. Adv. Mater. 9(2), 023001 (2008)CrossRef L. Li, K. Nagai, F. Yin, Progress in cold roll bonding of metals. Sci. Technol. Adv. Mater. 9(2), 023001 (2008)CrossRef
28.
go back to reference H. Kawamoto, S. Miura, K. Yano, K. Ohkubo, T. Mohri, Analysis of strain transfer through the Mg/Ti interface using crystallographic orientation analysis based on electron back-scattered diffraction patterns. Mater. Trans. 49(5), 1107–1111 (2008)CrossRef H. Kawamoto, S. Miura, K. Yano, K. Ohkubo, T. Mohri, Analysis of strain transfer through the Mg/Ti interface using crystallographic orientation analysis based on electron back-scattered diffraction patterns. Mater. Trans. 49(5), 1107–1111 (2008)CrossRef
29.
go back to reference G.F. Vander Voort, S. R. Lampman, B. R. Sanders, G. J. Anton, C. Polakowski, J. Kinson, K. Muldoon, S. D. Henry, and W. W. Scott Jr. ASM handbook. In: Metallography and Microstructures (Vol. 9, ASM Handbook, 2004), p. 44073–0002. G.F. Vander Voort, S. R. Lampman, B. R. Sanders, G. J. Anton, C. Polakowski, J. Kinson, K. Muldoon, S. D. Henry, and W. W. Scott Jr. ASM handbook. In: Metallography and Microstructures (Vol. 9, ASM Handbook, 2004), p. 44073–0002.
30.
go back to reference N. Kashaev et al., Comparative study of mechanical properties using standard and micro-specimens of base materials Inconel 625, Inconel 718 and Ti-6Al-4V. J. Market. Res. 2(1), 43–47 (2013) N. Kashaev et al., Comparative study of mechanical properties using standard and micro-specimens of base materials Inconel 625, Inconel 718 and Ti-6Al-4V. J. Market. Res. 2(1), 43–47 (2013)
31.
go back to reference J.S. Kim et al., Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties. Sci. Rep. 6, 26333 (2016)CrossRef J.S. Kim et al., Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties. Sci. Rep. 6, 26333 (2016)CrossRef
32.
go back to reference Y. Qiao et al., Microstructures, textures and mechanical properties evolution during cold drawing of pure Mg. Microsc. Res. 01(02), 8–15 (2013)CrossRef Y. Qiao et al., Microstructures, textures and mechanical properties evolution during cold drawing of pure Mg. Microsc. Res. 01(02), 8–15 (2013)CrossRef
33.
go back to reference H.-F. Sun, S.-J. Liang, E.-D. Wang, Mechanical properties and texture evolution during hot rolling of AZ31 magnesium alloy. Trans. Nonferrous Met. Soc. China. 19, 349–354 (2009)CrossRef H.-F. Sun, S.-J. Liang, E.-D. Wang, Mechanical properties and texture evolution during hot rolling of AZ31 magnesium alloy. Trans. Nonferrous Met. Soc. China. 19, 349–354 (2009)CrossRef
34.
go back to reference H.F. Sun, S.J. Liang, E.D. Wang, Mechanical properties and texture evolution during hot rolling of AZ31 magnesium alloy. Trans. Nonferrous Met. Soc. China. 19, 349–354 (2009)CrossRef H.F. Sun, S.J. Liang, E.D. Wang, Mechanical properties and texture evolution during hot rolling of AZ31 magnesium alloy. Trans. Nonferrous Met. Soc. China. 19, 349–354 (2009)CrossRef
35.
go back to reference L. Guo, F. Fujita, Influence of rolling parameters on dynamically recrystallized microstructures in AZ31 magnesium alloy sheets. J. Magnes. Alloys. 3(2), 95–105 (2015)CrossRef L. Guo, F. Fujita, Influence of rolling parameters on dynamically recrystallized microstructures in AZ31 magnesium alloy sheets. J. Magnes. Alloys. 3(2), 95–105 (2015)CrossRef
36.
go back to reference K. Hamad, Y.G. Ko, A cross-shear deformation for optimizing the strength and ductility of AZ31 magnesium alloys. Sci. Rep. 6, 29954 (2016)CrossRef K. Hamad, Y.G. Ko, A cross-shear deformation for optimizing the strength and ductility of AZ31 magnesium alloys. Sci. Rep. 6, 29954 (2016)CrossRef
37.
go back to reference J.C. Tan, M.J. Tan, Dynamic continuous recrystallization characteristics in two stage deformation of Mg–3Al–1Zn alloy sheet. Mater. Sci. Eng. A. 339, 124–132 (2003)CrossRef J.C. Tan, M.J. Tan, Dynamic continuous recrystallization characteristics in two stage deformation of Mg–3Al–1Zn alloy sheet. Mater. Sci. Eng. A. 339, 124–132 (2003)CrossRef
38.
go back to reference W.P. Jia et al., Texture evolution of AZ31 magnesium alloy sheets during warm rolling. J. Alloys Compd. 645, 70–77 (2015)CrossRef W.P. Jia et al., Texture evolution of AZ31 magnesium alloy sheets during warm rolling. J. Alloys Compd. 645, 70–77 (2015)CrossRef
39.
go back to reference Y. Wang et al., Formation and microstructure of shear bands during hot rolling of a Mg–6Zn–0.5Zr alloy plate with a basal texture. J. Alloys Compd. 644, 147–154 (2015)CrossRef Y. Wang et al., Formation and microstructure of shear bands during hot rolling of a Mg–6Zn–0.5Zr alloy plate with a basal texture. J. Alloys Compd. 644, 147–154 (2015)CrossRef
40.
go back to reference S. Sandlöbes et al., The relation between ductility and stacking fault energies in Mg and Mg–Y alloys. Acta Mater. 60(6–7), 3011–3021 (2012)CrossRef S. Sandlöbes et al., The relation between ductility and stacking fault energies in Mg and Mg–Y alloys. Acta Mater. 60(6–7), 3011–3021 (2012)CrossRef
41.
go back to reference Z.-Z. Shi, X.-F. Liu, Characteristics of cross grain boundary contraction twin pairs and bands in a deformed Mg alloy. J. Alloys Compd. 692, 274–279 (2017)CrossRef Z.-Z. Shi, X.-F. Liu, Characteristics of cross grain boundary contraction twin pairs and bands in a deformed Mg alloy. J. Alloys Compd. 692, 274–279 (2017)CrossRef
42.
go back to reference Y.B. Chun, C.H.J. Davies, Texture effects on development of shear bands in rolled AZ31 alloy. Mater. Sci. Eng. A. 556, 253–259 (2012)CrossRef Y.B. Chun, C.H.J. Davies, Texture effects on development of shear bands in rolled AZ31 alloy. Mater. Sci. Eng. A. 556, 253–259 (2012)CrossRef
43.
go back to reference S.E. Ion, F.J. Humphreys, S.H. White, Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium. Acta Metall. 30(10), 1909–1919 (1982)CrossRef S.E. Ion, F.J. Humphreys, S.H. White, Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium. Acta Metall. 30(10), 1909–1919 (1982)CrossRef
44.
go back to reference S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, J.M. Cabrera, Shear banding phenomenon during severe plastic deformation of an AZ31 magnesium alloy. J. Alloys Compd. 509(9), 3806–3810 (2011)CrossRef S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, J.M. Cabrera, Shear banding phenomenon during severe plastic deformation of an AZ31 magnesium alloy. J. Alloys Compd. 509(9), 3806–3810 (2011)CrossRef
45.
go back to reference H. Yan et al., Twins, shear bands and recrystallization of a Mg–2.0%Zn–0.8%Gd alloy during rolling. Scripta Mater. 64(2), 141–144 (2011)CrossRef H. Yan et al., Twins, shear bands and recrystallization of a Mg–2.0%Zn–0.8%Gd alloy during rolling. Scripta Mater. 64(2), 141–144 (2011)CrossRef
46.
go back to reference J.H. Dai et al., First principles study on stability and hydrogen adsorption properties of Mg/Ti interface. Phys. Chem. Chem. Phys. 17(25), 16594–16600 (2015)CrossRef J.H. Dai et al., First principles study on stability and hydrogen adsorption properties of Mg/Ti interface. Phys. Chem. Chem. Phys. 17(25), 16594–16600 (2015)CrossRef
47.
go back to reference A. Baldi et al., Mg/Ti multilayers: Structural and hydrogen absorption properties. Phys. Rev. B. 81(22), 224203 (2010)CrossRef A. Baldi et al., Mg/Ti multilayers: Structural and hydrogen absorption properties. Phys. Rev. B. 81(22), 224203 (2010)CrossRef
48.
go back to reference K. Asano, H. Enoki, E. Akiba, Synthesis process of Mg–Ti BCC alloys by means of ball milling. J. Alloys Compd. 486(1–2), 115–123 (2009)CrossRef K. Asano, H. Enoki, E. Akiba, Synthesis process of Mg–Ti BCC alloys by means of ball milling. J. Alloys Compd. 486(1–2), 115–123 (2009)CrossRef
49.
go back to reference S. Rousselot, D. Guay, L. Roué, Synthesis of fcc Mg–Ti–H alloys by high energy ball milling: Structure and electrochemical hydrogen storage properties. J. Power Sources. 195(13), 4370–4374 (2010)CrossRef S. Rousselot, D. Guay, L. Roué, Synthesis of fcc Mg–Ti–H alloys by high energy ball milling: Structure and electrochemical hydrogen storage properties. J. Power Sources. 195(13), 4370–4374 (2010)CrossRef
50.
go back to reference X. Lei et al., Microstructure and mechanical properties of magnesium alloy AZ31 processed by compound channel extrusion. Mater. Trans. 52(6), 1082–1087 (2011)CrossRef X. Lei et al., Microstructure and mechanical properties of magnesium alloy AZ31 processed by compound channel extrusion. Mater. Trans. 52(6), 1082–1087 (2011)CrossRef
51.
go back to reference A. Jäger et al., Influence of annealing on the microstructure of commercial Mg alloy AZ31 after mechanical forming. Mater. Sci. Eng. A. 432(1–2), 20–25 (2006)CrossRef A. Jäger et al., Influence of annealing on the microstructure of commercial Mg alloy AZ31 after mechanical forming. Mater. Sci. Eng. A. 432(1–2), 20–25 (2006)CrossRef
52.
go back to reference S. Choi, E. Shin, B. Seong, Simulation of deformation twins and deformation texture in an AZ31 Mg alloy under uniaxial compression. Acta Mater. 55(12), 4181–4192 (2007)CrossRef S. Choi, E. Shin, B. Seong, Simulation of deformation twins and deformation texture in an AZ31 Mg alloy under uniaxial compression. Acta Mater. 55(12), 4181–4192 (2007)CrossRef
53.
go back to reference H.J. Yang et al., EBSD study on deformation twinning in AZ31 magnesium alloy during quasi-in-situ compression. Adv. Eng. Mater. 10(10), 955–960 (2008)CrossRef H.J. Yang et al., EBSD study on deformation twinning in AZ31 magnesium alloy during quasi-in-situ compression. Adv. Eng. Mater. 10(10), 955–960 (2008)CrossRef
54.
go back to reference K.K. Alaneme, E.A. Okotete, Enhancing plastic deformability of Mg and its alloys—A review of traditional and nascent developments. J. Magnes. Alloys. 5(4), 460–475 (2017)CrossRef K.K. Alaneme, E.A. Okotete, Enhancing plastic deformability of Mg and its alloys—A review of traditional and nascent developments. J. Magnes. Alloys. 5(4), 460–475 (2017)CrossRef
55.
go back to reference J.C. Tan, M.J. Tan, Dynamic continuous recrystallization characteristics in two stage deformation of Mg–3Al–1Zn alloy sheet. Mater. Sci. Eng. A. 339(1), 124–132 (2003)CrossRef J.C. Tan, M.J. Tan, Dynamic continuous recrystallization characteristics in two stage deformation of Mg–3Al–1Zn alloy sheet. Mater. Sci. Eng. A. 339(1), 124–132 (2003)CrossRef
56.
go back to reference D. Guan, W.M. Rainforth, J. Gao, J. Sharp, B. Wynne, L. Ma, Individual effect of recrystallisation nucleation sites on texture weakening in a magnesium alloy: Part 1- double twins. Acta Mater. 135, 14–24 (2017)CrossRef D. Guan, W.M. Rainforth, J. Gao, J. Sharp, B. Wynne, L. Ma, Individual effect of recrystallisation nucleation sites on texture weakening in a magnesium alloy: Part 1- double twins. Acta Mater. 135, 14–24 (2017)CrossRef
57.
go back to reference D. Guan, W.M. Rainforth, L. Ma, B. Wynne, J. Gao, Twin recrystallization mechanisms and exceptional contribution to texture evolution during annealing in a magnesium alloy. Acta Mater. 126, 132–144 (2017)CrossRef D. Guan, W.M. Rainforth, L. Ma, B. Wynne, J. Gao, Twin recrystallization mechanisms and exceptional contribution to texture evolution during annealing in a magnesium alloy. Acta Mater. 126, 132–144 (2017)CrossRef
58.
go back to reference H. Yan, R.S. Chen, E.H. Han, Room-temperature ductility and anisotropy of two rolled Mg–Zn–Gd alloys. Mater. Sci. Eng. A. 527(15), 3317–3322 (2010)CrossRef H. Yan, R.S. Chen, E.H. Han, Room-temperature ductility and anisotropy of two rolled Mg–Zn–Gd alloys. Mater. Sci. Eng. A. 527(15), 3317–3322 (2010)CrossRef
59.
go back to reference F. Kaiser, J. Bohlen, D. Letzig, K.U. Kainer, A. Styczynski, C. Hartig, Influence of rolling conditions on the microstructure and mechanical properties of magnesium sheet AZ31. Adv. Eng. Mater. 5(12), 891–896 (2003)CrossRef F. Kaiser, J. Bohlen, D. Letzig, K.U. Kainer, A. Styczynski, C. Hartig, Influence of rolling conditions on the microstructure and mechanical properties of magnesium sheet AZ31. Adv. Eng. Mater. 5(12), 891–896 (2003)CrossRef
60.
go back to reference S. Niknejad, S. Esmaeili, N.Y. Zhou, The role of double twinning on transgranular fracture in magnesium AZ61 in a localized stress field. Acta Mater. 102, 1–16 (2016)CrossRef S. Niknejad, S. Esmaeili, N.Y. Zhou, The role of double twinning on transgranular fracture in magnesium AZ61 in a localized stress field. Acta Mater. 102, 1–16 (2016)CrossRef
61.
go back to reference M.R. Barnett, Twinning and the ductility of magnesium alloys. Mater. Sci. Eng. A. 464(1–2), 8–16 (2007)CrossRef M.R. Barnett, Twinning and the ductility of magnesium alloys. Mater. Sci. Eng. A. 464(1–2), 8–16 (2007)CrossRef
62.
go back to reference D. Luo et al., Effect of rolling route on microstructure and tensile properties of twin-roll casting AZ31 Mg alloy sheets. Materials (Basel). 9(6), 433 (2016)CrossRef D. Luo et al., Effect of rolling route on microstructure and tensile properties of twin-roll casting AZ31 Mg alloy sheets. Materials (Basel). 9(6), 433 (2016)CrossRef
63.
go back to reference Y. Qin et al., Microstructure and texture evolution in multi-pass warm rolled AZ31 magnesium alloy. MATEC Web Conf. 21, 03003 (2015)CrossRef Y. Qin et al., Microstructure and texture evolution in multi-pass warm rolled AZ31 magnesium alloy. MATEC Web Conf. 21, 03003 (2015)CrossRef
64.
go back to reference Q. Miao et al., Fabrication of excellent mechanical properties AZ31 magnesium alloy sheets by conventional rolling and subsequent annealing. Mater. Sci. Eng. A. 528(22–23), 6694–6701 (2011)CrossRef Q. Miao et al., Fabrication of excellent mechanical properties AZ31 magnesium alloy sheets by conventional rolling and subsequent annealing. Mater. Sci. Eng. A. 528(22–23), 6694–6701 (2011)CrossRef
65.
go back to reference H.Y. Chao et al., Static recrystallization kinetics of a heavily cold drawn AZ31 magnesium alloy under annealing treatment. Mater. Charact. 62(3), 312–320 (2011)CrossRef H.Y. Chao et al., Static recrystallization kinetics of a heavily cold drawn AZ31 magnesium alloy under annealing treatment. Mater. Charact. 62(3), 312–320 (2011)CrossRef
66.
go back to reference J.Y. Li et al., Effects of annealing treatment on texture and stamping properties of AZ31 magnesium alloy. Mater. Sci. Forum. 686, 101–106 (2011)CrossRef J.Y. Li et al., Effects of annealing treatment on texture and stamping properties of AZ31 magnesium alloy. Mater. Sci. Forum. 686, 101–106 (2011)CrossRef
67.
go back to reference A.K. Singh, R.A. Schwarzer, Texture and anisotropy of mechanical properties in titanium and its alloys. Z. Metallkd. 91(9), 702 (2000) A.K. Singh, R.A. Schwarzer, Texture and anisotropy of mechanical properties in titanium and its alloys. Z. Metallkd. 91(9), 702 (2000)
68.
go back to reference I.C. Dragomir et al., Evolution of dislocation density and character in hot rolled titanium determined by X-ray diffraction. Mater. Charact. 55(1), 66–74 (2005)CrossRef I.C. Dragomir et al., Evolution of dislocation density and character in hot rolled titanium determined by X-ray diffraction. Mater. Charact. 55(1), 66–74 (2005)CrossRef
69.
go back to reference J. Bouhattate et al., Texture prediction of cold- and hot-rolled titanium using processing path model. J. Mater. Eng. Perform. 20(2), 177–184 (2010)CrossRef J. Bouhattate et al., Texture prediction of cold- and hot-rolled titanium using processing path model. J. Mater. Eng. Perform. 20(2), 177–184 (2010)CrossRef
70.
go back to reference Y.G. Ko, K. Hamad, Structural features and mechanical properties of AZ31 Mg alloy warm-deformed by differential speed rolling. J. Alloys Compd. 744, 96–103 (2018)CrossRef Y.G. Ko, K. Hamad, Structural features and mechanical properties of AZ31 Mg alloy warm-deformed by differential speed rolling. J. Alloys Compd. 744, 96–103 (2018)CrossRef
71.
go back to reference L. Lu et al., Effect of annealing on microstructure evolution and mechanical property of cold forged magnesium pipes. Mater. Des. 39, 131–139 (2012)CrossRef L. Lu et al., Effect of annealing on microstructure evolution and mechanical property of cold forged magnesium pipes. Mater. Des. 39, 131–139 (2012)CrossRef
72.
go back to reference J.-G. Luo, V.L. Acoff, Using cold roll bonding and annealing to process Ti/Al multi-layered composites from elemental foils. Mater. Sci. Eng. A. 379(1–2), 164–172 (2004)CrossRef J.-G. Luo, V.L. Acoff, Using cold roll bonding and annealing to process Ti/Al multi-layered composites from elemental foils. Mater. Sci. Eng. A. 379(1–2), 164–172 (2004)CrossRef
73.
go back to reference D. Yang et al., Ultrafine equiaxed-grain Ti/Al composite produced by accumulative roll bonding. Scripta Mater. 62(5), 321–324 (2010)CrossRef D. Yang et al., Ultrafine equiaxed-grain Ti/Al composite produced by accumulative roll bonding. Scripta Mater. 62(5), 321–324 (2010)CrossRef
74.
go back to reference V. Maier, H.W. Höppel, M. Göken, Nanomechanical behaviour of Al-Ti layered composites produced by accumulative roll bonding. J. Phys: Conf. Ser. 240, 012108 (2010) V. Maier, H.W. Höppel, M. Göken, Nanomechanical behaviour of Al-Ti layered composites produced by accumulative roll bonding. J. Phys: Conf. Ser. 240, 012108 (2010)
75.
go back to reference M. Huang et al., Revealing extraordinary tensile plasticity in layered Ti-Al metal composite. Sci. Rep. 6, 38461 (2016)CrossRef M. Huang et al., Revealing extraordinary tensile plasticity in layered Ti-Al metal composite. Sci. Rep. 6, 38461 (2016)CrossRef
Metadata
Title
Texture and Tensile Properties of Three-Layered Titanium Clad–AZ31 Magnesium Alloy Sheet by Single-Pass Hot Rolling
Author
Baleegh Alobaid
Publication date
23-03-2023
Publisher
Springer US
Published in
Metallography, Microstructure, and Analysis / Issue 3/2023
Print ISSN: 2192-9262
Electronic ISSN: 2192-9270
DOI
https://doi.org/10.1007/s13632-023-00948-0

Other articles of this Issue 3/2023

Metallography, Microstructure, and Analysis 3/2023 Go to the issue

Feature

MicroArt

Premium Partners