Skip to main content
Top

2017 | OriginalPaper | Chapter

14. The Amazing Chemistry of Metal-Organic Frameworks

Authors : Regina C. G. Frem, Guilherme Arroyos, Guilherme N. Lucena, Jader B. da Silva Flor, Marcelo A. Fávaro, Mariana F. Coura, Renata C. Alves

Published in: Recent Advances in Complex Functional Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The interest in the study of metal-organic frameworks (MOFs) has been growing quickly and prominently in the last years, because such materials that have relevant properties such as porosity, high surface area, and the possibility of functionalization of their internal surfaces have enabled applications in different areas. This is a new research area in which, from the conceptual point of view, Coordination Chemistry and Solid-State Chemistry principles are strictly related. According to the official definition, MOFs are coordination polymers well defined with an open framework containing potential voids as the feature. Despite the pioneering article of Kinoshita published in 1959, the area did not gain notoriety until the late 1990s with the reporting of Omar Yaghi about a zinc(II) porous coordination solid of high structural stability, popularly named MOF-5. For the rational planning of these complex materials, in particular, this same group of research has developed the reticular synthesis approach in which it requires the use of secondary building units (SBUs) that are linked by means of strong covalent bonds throughout the crystal. A judicious choice of these building blocks can lead to the construction of complex networks containing different topologies, as well as specific functions and well-controlled morphologies for a wide variety of applications. In addition, we also highlight the main techniques for synthesis and characterization of MOFs and nano-MOFs, including different strategies to scalable batch and continuous production. Analogous MOF-based materials as, for example, bio-MOFs and Ln-MOFs, will also be presented in this chapter. Hence, the former concerns porous materials that are constructed by biologically compatible and renewable components such as bioelements, amino acids, or peptides, and for this reason, they have been widely used as drug carriers. The Ln-MOFs are lanthanide(III)-based MOFs with promising applications as luminescent sensors, light-emitting devices, biological markers, and so on. This chapter will also focus on recent advances in research on hierarchically structured meso-/macroporous and functionalized materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Li H et al (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic frameworks. Nature 402(6759):276–279CrossRef Li H et al (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic frameworks. Nature 402(6759):276–279CrossRef
2.
go back to reference Coudert F-X, Fuchs AH (2016) Computational characterization and prediction of metal–organic framework properties. Coord Chem Rev 307:211–236CrossRef Coudert F-X, Fuchs AH (2016) Computational characterization and prediction of metal–organic framework properties. Coord Chem Rev 307:211–236CrossRef
3.
go back to reference Kim D, Liu X, Lah MS (2015) Topology analysis of metal–organic frameworks based on metal–organic polyhedra as secondary or tertiary building units. Inorg Chem Front 2: 336–360CrossRef Kim D, Liu X, Lah MS (2015) Topology analysis of metal–organic frameworks based on metal–organic polyhedra as secondary or tertiary building units. Inorg Chem Front 2: 336–360CrossRef
4.
go back to reference Li M, Li D, O’Keeffe M, Yaghi OM (2014) Topological analysis of metal − organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem Soc Rev 114:1343–1370CrossRef Li M, Li D, O’Keeffe M, Yaghi OM (2014) Topological analysis of metal − organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem Soc Rev 114:1343–1370CrossRef
5.
go back to reference Lu W, Wei Z, Gu Z-Y, Liu T-F, Park J, Park J, Tian J, Zhang M, Zhang Q, Gentle T III, Boscha M, Zhou H-C (2014) Tuning the structure and function of metal–organic frameworks via linker design. Chem Soc Rev 43:5561–5593CrossRef Lu W, Wei Z, Gu Z-Y, Liu T-F, Park J, Park J, Tian J, Zhang M, Zhang Q, Gentle T III, Boscha M, Zhou H-C (2014) Tuning the structure and function of metal–organic frameworks via linker design. Chem Soc Rev 43:5561–5593CrossRef
6.
go back to reference Dey C, Kundu T, Biswal BP, Mallick A, Banerjee R (2014) Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. Acta Cryst B70:3–10 Dey C, Kundu T, Biswal BP, Mallick A, Banerjee R (2014) Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. Acta Cryst B70:3–10
7.
go back to reference Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444CrossRef Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444CrossRef
8.
go back to reference O’Keeffe M, Yaghi OM (2012) Deconstructing the crystal structures of metal organic frameworks and related materials into their underlying nets. Chem Rev 112:675–702CrossRef O’Keeffe M, Yaghi OM (2012) Deconstructing the crystal structures of metal organic frameworks and related materials into their underlying nets. Chem Rev 112:675–702CrossRef
9.
go back to reference Rowsell JLC, Yaghi OM (2004) Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater 73:3–14CrossRef Rowsell JLC, Yaghi OM (2004) Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater 73:3–14CrossRef
10.
go back to reference Kitagawa S, Kitaura R, Noro S-I (2004) Functional porous coordination polymers. Angew Chem Int Ed 43:2334–2375CrossRef Kitagawa S, Kitaura R, Noro S-I (2004) Functional porous coordination polymers. Angew Chem Int Ed 43:2334–2375CrossRef
11.
12.
go back to reference Rosi NL, Eddaoudi M, Kim J, O’Keeffe M, Yaghi OM (2002) Advances in the chemistry of metal–organic frameworks. CrystEngComm 4:401–404CrossRef Rosi NL, Eddaoudi M, Kim J, O’Keeffe M, Yaghi OM (2002) Advances in the chemistry of metal–organic frameworks. CrystEngComm 4:401–404CrossRef
13.
go back to reference Stefan Kaskel (2016) The chemistry of metal-organic frameworks. Synthesis, characterization and applications, vol 1. Wiley, Weinheim, 849p Stefan Kaskel (2016) The chemistry of metal-organic frameworks. Synthesis, characterization and applications, vol 1. Wiley, Weinheim, 849p
14.
go back to reference Jiang J (ed) (2015) Metal–organic frameworks materials modeling towards potential engineering applications. Pan Stanford Publishing, Boca Raton Jiang J (ed) (2015) Metal–organic frameworks materials modeling towards potential engineering applications. Pan Stanford Publishing, Boca Raton
15.
go back to reference MacGillivray LR, Lukehart CM (eds) (2014) Metal-organic framework materials. Wiley, Chichester\West Sussex MacGillivray LR, Lukehart CM (eds) (2014) Metal-organic framework materials. Wiley, Chichester\West Sussex
16.
go back to reference Farrusseng D (ed) (2011) Metal-organic frameworks. Applications from catalysis to gas storage. Wiley, Weinheim Farrusseng D (ed) (2011) Metal-organic frameworks. Applications from catalysis to gas storage. Wiley, Weinheim
17.
go back to reference Schröder M (ed) (2010) Functional metal-organic frameworks: gas storage, separation and catalysis. Springer, Berlin Schröder M (ed) (2010) Functional metal-organic frameworks: gas storage, separation and catalysis. Springer, Berlin
18.
go back to reference Macgillivray LR (ed) (2010) Metal-organic frameworks. Design and application. Wiley, Hoboken Macgillivray LR (ed) (2010) Metal-organic frameworks. Design and application. Wiley, Hoboken
19.
go back to reference Férey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37:191–214CrossRef Férey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37:191–214CrossRef
20.
go back to reference Farha OK, Eryazici I, Jeong NC, Hauser BG, Wilmer CE, Sarjeant AA, Snurr RQ, Nguyen ST, Yazaydın AO, Hupp JT (2012) Metal − organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc 134:15016–15021CrossRef Farha OK, Eryazici I, Jeong NC, Hauser BG, Wilmer CE, Sarjeant AA, Snurr RQ, Nguyen ST, Yazaydın AO, Hupp JT (2012) Metal − organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc 134:15016–15021CrossRef
21.
go back to reference Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydın AO, Snurr RQ, O’Keeffe M, Kim J, Yaghi OM (2010) Ultrahigh porosity in metal-organic frameworks. Science 329:424–428CrossRef Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydın AO, Snurr RQ, O’Keeffe M, Kim J, Yaghi OM (2010) Ultrahigh porosity in metal-organic frameworks. Science 329:424–428CrossRef
22.
go back to reference Song Z, Nambo A, Tate KL, Bao A, Zhu M, Jasinski JB, Zhou SJ, Meyer HS, Carreon MA, Li S, Yu M (2016) Nanovalved Adsorbents for CH4 Storage. Nano Lett 16:3309–3313CrossRef Song Z, Nambo A, Tate KL, Bao A, Zhu M, Jasinski JB, Zhou SJ, Meyer HS, Carreon MA, Li S, Yu M (2016) Nanovalved Adsorbents for CH4 Storage. Nano Lett 16:3309–3313CrossRef
23.
go back to reference Férey G, Serre C, Devic T, Maurin G, Jobic H, Llewellyn PL, Weireld GD, Vimont A, Daturif M, Changg J-S (2011) Why hybrid porous solids capture greenhouse gases? Chem Soc Rev 40:550–562CrossRef Férey G, Serre C, Devic T, Maurin G, Jobic H, Llewellyn PL, Weireld GD, Vimont A, Daturif M, Changg J-S (2011) Why hybrid porous solids capture greenhouse gases? Chem Soc Rev 40:550–562CrossRef
24.
go back to reference Férey G, Serre C (2009) Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chem Soc Rev 38:1380–1399CrossRef Férey G, Serre C (2009) Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chem Soc Rev 38:1380–1399CrossRef
25.
go back to reference Llabrés i Xamena F, Gascon J (2013) Metal organic frameworks as heterogeneous catalysts, RSC Publishing, Cambridge, 432 p Llabrés i Xamena F, Gascon J (2013) Metal organic frameworks as heterogeneous catalysts, RSC Publishing, Cambridge, 432 p
26.
go back to reference Giménez-Marqués M, Hidalgo T, Serre C, Horcajada P (2016) Nanostructured metal–organic frameworks and their bio-related applications. Coord Chem Rev 307:342–360CrossRef Giménez-Marqués M, Hidalgo T, Serre C, Horcajada P (2016) Nanostructured metal–organic frameworks and their bio-related applications. Coord Chem Rev 307:342–360CrossRef
27.
go back to reference Metal-organic frameworks for photonics applications (2014) Structure and Bonding 157, Series Editor: D.M.P. Mingos. Springer, Berlin, 189p Metal-organic frameworks for photonics applications (2014) Structure and Bonding 157, Series Editor: D.M.P. Mingos. Springer, Berlin, 189p
28.
go back to reference Zou Z, Wang S, Jia J, Xu F, Long Z, Hou X (2016) Ultrasensitive determination of inorganic arsenic by hydride generation-atomic fluorescence spectrometry using Fe3O4@ZIF-8 nanoparticles for preconcentration. Microchem J 124:578–583CrossRef Zou Z, Wang S, Jia J, Xu F, Long Z, Hou X (2016) Ultrasensitive determination of inorganic arsenic by hydride generation-atomic fluorescence spectrometry using Fe3O4@ZIF-8 nanoparticles for preconcentration. Microchem J 124:578–583CrossRef
29.
go back to reference Choi KM, Jeong HM, Park JH, Zhang Y-B, Kang JK, Yaghi OM (2014) Supercapacitors of Nanocrystalline metal organic frameworks. ACS Nano 8:7451–7457CrossRef Choi KM, Jeong HM, Park JH, Zhang Y-B, Kang JK, Yaghi OM (2014) Supercapacitors of Nanocrystalline metal organic frameworks. ACS Nano 8:7451–7457CrossRef
30.
go back to reference Yamagiwa H, Sato S, Fukawa T, Ikehara T, Maeda R, Mihara T, Kimura M (2014) Detection of volatile organic compounds by weight-detectable sensors coated with metal-organic frameworks. Sci Rep 4:06247CrossRef Yamagiwa H, Sato S, Fukawa T, Ikehara T, Maeda R, Mihara T, Kimura M (2014) Detection of volatile organic compounds by weight-detectable sensors coated with metal-organic frameworks. Sci Rep 4:06247CrossRef
31.
go back to reference Coronado E, Espallargas GM (2013) Dynamic magnetic MOFs. Chem Soc Rev 42: 1525–1539CrossRef Coronado E, Espallargas GM (2013) Dynamic magnetic MOFs. Chem Soc Rev 42: 1525–1539CrossRef
32.
go back to reference Batten SR, Champness NR, Chen X-M, Garcia-Martinez J, Kitagawa S, Öhrström L, O’Keeffe M, Suhh MP, Reedijki J (2012) Coordination polymers, metal–organic frameworks and the need for terminology guidelines. CrystEngComm 14:3001–3004CrossRef Batten SR, Champness NR, Chen X-M, Garcia-Martinez J, Kitagawa S, Öhrström L, O’Keeffe M, Suhh MP, Reedijki J (2012) Coordination polymers, metal–organic frameworks and the need for terminology guidelines. CrystEngComm 14:3001–3004CrossRef
33.
go back to reference Batten SR et al (2013) Terminology of metal-organic frameworks and coordination polymers (IUPAC recommendations 2013). Pure Appl Chem 85:1715–1724CrossRef Batten SR et al (2013) Terminology of metal-organic frameworks and coordination polymers (IUPAC recommendations 2013). Pure Appl Chem 85:1715–1724CrossRef
34.
go back to reference Kinoshita Y et al (1959) The crystal structure of bis(adiponitrilo)copper(I) nitrate. Bull Chem Soc Jpn 32:1221–1226CrossRef Kinoshita Y et al (1959) The crystal structure of bis(adiponitrilo)copper(I) nitrate. Bull Chem Soc Jpn 32:1221–1226CrossRef
35.
go back to reference Weels AF (1978) Three-dimensional nets and polyhedra. Bull Am Math Soc 84:466–470CrossRef Weels AF (1978) Three-dimensional nets and polyhedra. Bull Am Math Soc 84:466–470CrossRef
36.
go back to reference Hoskins BF, Robson R (1989) Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J Am Chem Soc 111:5962–5964CrossRef Hoskins BF, Robson R (1989) Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J Am Chem Soc 111:5962–5964CrossRef
37.
go back to reference Li H, Eddaoudi M, Groy TL, Yaghi OM (1998) Establishing microporosity in open metal-organic frameworks: gas sorption isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate). J Am Chem Soc 120:8571–8572CrossRef Li H, Eddaoudi M, Groy TL, Yaghi OM (1998) Establishing microporosity in open metal-organic frameworks: gas sorption isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate). J Am Chem Soc 120:8571–8572CrossRef
38.
go back to reference Férey G et al (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309:2040–2042CrossRef Férey G et al (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309:2040–2042CrossRef
39.
go back to reference Chui SS-Y, Lo SM-F, Charmant JPH, Orpen AG, Williams ID (1999) A chemically Functionalizable Nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283:1148–1150CrossRef Chui SS-Y, Lo SM-F, Charmant JPH, Orpen AG, Williams ID (1999) A chemically Functionalizable Nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283:1148–1150CrossRef
40.
go back to reference Dietzel PDC et al (2010) Interaction of hydrogen with accessible metal sites in the metal-organic frameworks M(2)(dhtp) (CPO-27-M; M = Ni, Co, Mg). Chem Commun 46: 4962–4964CrossRef Dietzel PDC et al (2010) Interaction of hydrogen with accessible metal sites in the metal-organic frameworks M(2)(dhtp) (CPO-27-M; M = Ni, Co, Mg). Chem Commun 46: 4962–4964CrossRef
41.
go back to reference Michl J (ed) (1995) Modular chemistry. Kluwer Academic Publishers, Dordrecht Michl J (ed) (1995) Modular chemistry. Kluwer Academic Publishers, Dordrecht
42.
go back to reference Yaghi OM, Li H, Davis C, Richardson D, Groy TL (1998) Synthetic strategies, structure patterns, and emerging properties in the chemistry of modular porous solids. Acc Chem Res 31:474–484CrossRef Yaghi OM, Li H, Davis C, Richardson D, Groy TL (1998) Synthetic strategies, structure patterns, and emerging properties in the chemistry of modular porous solids. Acc Chem Res 31:474–484CrossRef
43.
go back to reference Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, O’Keeffe M, Yaghi OM (2001) Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc Chem Res 34:319–330CrossRef Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, O’Keeffe M, Yaghi OM (2001) Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc Chem Res 34:319–330CrossRef
44.
go back to reference Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423:705–714CrossRef Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423:705–714CrossRef
45.
go back to reference Cook TR, Zheng Y-R, Stang PJ (2013) Metal − organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal − organic materials. Chem Rev 113:734–777CrossRef Cook TR, Zheng Y-R, Stang PJ (2013) Metal − organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal − organic materials. Chem Rev 113:734–777CrossRef
46.
go back to reference O’Keeffe M, Eddaoudi M, Li H, Reineke TM, Yaghi OM (2000) Frameworks for extended solids: geometrical design principles. J Solid State Chem 152:3–20CrossRef O’Keeffe M, Eddaoudi M, Li H, Reineke TM, Yaghi OM (2000) Frameworks for extended solids: geometrical design principles. J Solid State Chem 152:3–20CrossRef
47.
go back to reference Ockwig NW, Delgado-Friedrichs O, O’Keeffe M, Yaghi OM (2005) Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. Acc Chem Res 38:176–182CrossRef Ockwig NW, Delgado-Friedrichs O, O’Keeffe M, Yaghi OM (2005) Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. Acc Chem Res 38:176–182CrossRef
48.
go back to reference O’Keeffe M, Peskov MA, Ramsden SJ, Yaghi OM (2008) The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for crystal nets. Acc Chem Res 41:1782–1789CrossRef O’Keeffe M, Peskov MA, Ramsden SJ, Yaghi OM (2008) The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for crystal nets. Acc Chem Res 41:1782–1789CrossRef
49.
go back to reference Hendon CH, Walsh A (2015) Chemical principles underpinning the performance of the metal–organic framework HKUST-1. Chem Sci 6:3674–3683CrossRef Hendon CH, Walsh A (2015) Chemical principles underpinning the performance of the metal–organic framework HKUST-1. Chem Sci 6:3674–3683CrossRef
50.
go back to reference Öhrström L (2015) Let’s talk about MOFs—topology and terminology of metal-organic frameworks and why we need them. Crystals 5:154–162CrossRef Öhrström L (2015) Let’s talk about MOFs—topology and terminology of metal-organic frameworks and why we need them. Crystals 5:154–162CrossRef
51.
go back to reference Eubank JF, Walsh RD, Eddaoudi M (2005) Terminal co-ligand directed synthesis of a neutral, non-interpenetrated (10,3)-a metal–organic framework. Chem Commun 16:2095–2097 Eubank JF, Walsh RD, Eddaoudi M (2005) Terminal co-ligand directed synthesis of a neutral, non-interpenetrated (10,3)-a metal–organic framework. Chem Commun 16:2095–2097
52.
go back to reference Biradha K, Fujita M (2002) A springlike 3D-coordination network that shrinks or swells in a crystal-to-crystal manner upon guest removal or readsorption. Angew Chem Int Ed 41: 3392–3395CrossRef Biradha K, Fujita M (2002) A springlike 3D-coordination network that shrinks or swells in a crystal-to-crystal manner upon guest removal or readsorption. Angew Chem Int Ed 41: 3392–3395CrossRef
53.
go back to reference Dietzel PDC, Morita Y, Blom R, Fjellvg H (2005) An in situ high-temperature single-crystal investigation of a dehydrated metal–organic framework compound and field-induced magnetization of one-dimensional metal–oxygen chains. Angew Chem 117:6512–6516CrossRef Dietzel PDC, Morita Y, Blom R, Fjellvg H (2005) An in situ high-temperature single-crystal investigation of a dehydrated metal–organic framework compound and field-induced magnetization of one-dimensional metal–oxygen chains. Angew Chem 117:6512–6516CrossRef
54.
go back to reference Furukawa H, Go YB, Ko N, Park YK, Uribe-Romo FJ, Kim J, O’Keeffe M, Yaghi OM (2011) Isoreticular expansion of metal–organic frameworks with triangular and square building units and the lowest calculated density for porous crystals. Inorg Chem 50:9147–9152CrossRef Furukawa H, Go YB, Ko N, Park YK, Uribe-Romo FJ, Kim J, O’Keeffe M, Yaghi OM (2011) Isoreticular expansion of metal–organic frameworks with triangular and square building units and the lowest calculated density for porous crystals. Inorg Chem 50:9147–9152CrossRef
55.
go back to reference Furukawa H, Kim J, Ockwig NW, O’Keeffe M, Yaghi OM (2008) Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal − organic frameworks and Polyhedra. J Am Chem Soc 130:11650–11661CrossRef Furukawa H, Kim J, Ockwig NW, O’Keeffe M, Yaghi OM (2008) Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal − organic frameworks and Polyhedra. J Am Chem Soc 130:11650–11661CrossRef
56.
go back to reference Liang L-L, Zhang J, Ren S-B, Ge G-W, Li Y-Z, Du H-B, You X-Z (2010) Rational synthesis of a microporous metal–organic framework with PtS topology using a semi-rigid tetrahedral linker. CrystEngComm 12:2008–2010CrossRef Liang L-L, Zhang J, Ren S-B, Ge G-W, Li Y-Z, Du H-B, You X-Z (2010) Rational synthesis of a microporous metal–organic framework with PtS topology using a semi-rigid tetrahedral linker. CrystEngComm 12:2008–2010CrossRef
57.
go back to reference Noro S-I, Kitagawa S, Kondo M, Seki K (2000) A new, methane adsorbent, porous coordination polymer [{CuSiF6(4,4′-bipyridine)2}n ]. Angew Chem Int Ed 39:2081–2084CrossRef Noro S-I, Kitagawa S, Kondo M, Seki K (2000) A new, methane adsorbent, porous coordination polymer [{CuSiF6(4,4′-bipyridine)2}n ]. Angew Chem Int Ed 39:2081–2084CrossRef
58.
go back to reference Lu J, Mondal A, Moulton B, Zaworotko MJ (2001) Polygons and Faceted Polyhedra and Nanoporous Networks. Angew Chem Int Ed 40:2113–2116CrossRef Lu J, Mondal A, Moulton B, Zaworotko MJ (2001) Polygons and Faceted Polyhedra and Nanoporous Networks. Angew Chem Int Ed 40:2113–2116CrossRef
59.
go back to reference Perry JJ IV, Perman JA, Zaworotko MJ (2009) Design and synthesis of metal–organic frameworks using metal–organic polyhedra as supermolecular building blocks. Chem Soc Rev 38:1400–1417CrossRef Perry JJ IV, Perman JA, Zaworotko MJ (2009) Design and synthesis of metal–organic frameworks using metal–organic polyhedra as supermolecular building blocks. Chem Soc Rev 38:1400–1417CrossRef
60.
go back to reference Zaworotko MJ (2009) Metal–organic materials: a reversible step forward. Nat Chem 1: 267–268CrossRef Zaworotko MJ (2009) Metal–organic materials: a reversible step forward. Nat Chem 1: 267–268CrossRef
61.
go back to reference Park J, Hong S, Moon D, Park M, Lee K, Kang S, Zou Y, John RP, Kim GH, Lah MS (2007) Porous Metal − Organic frameworks based on metal − organic Polyhedra with Nanosized cavities as Supramolecular building blocks: two-fold interpenetrating primitive cubic networks of [Cu6L8]12+ Nanocages. Inorg Chem 46:10208–10213CrossRef Park J, Hong S, Moon D, Park M, Lee K, Kang S, Zou Y, John RP, Kim GH, Lah MS (2007) Porous Metal − Organic frameworks based on metal − organic Polyhedra with Nanosized cavities as Supramolecular building blocks: two-fold interpenetrating primitive cubic networks of [Cu6L8]12+ Nanocages. Inorg Chem 46:10208–10213CrossRef
62.
go back to reference Guillerm V, Kim D, Eubank JF, Luebke R, Liu X, Adil K, Lah MS, Eddaoudi M (2014) A supermolecular building approach for the design and construction of metal–organic frameworks. Chem Soc Rev 43:6141–6172CrossRef Guillerm V, Kim D, Eubank JF, Luebke R, Liu X, Adil K, Lah MS, Eddaoudi M (2014) A supermolecular building approach for the design and construction of metal–organic frameworks. Chem Soc Rev 43:6141–6172CrossRef
63.
go back to reference Bhattacharjee S, Chenab C, Ahn W-S (2014) Chromium terephthalate metal–organic framework MIL-101: synthesis, functionalization, and applications for adsorption and catalysis. RSC Adv 4:52500–52525CrossRef Bhattacharjee S, Chenab C, Ahn W-S (2014) Chromium terephthalate metal–organic framework MIL-101: synthesis, functionalization, and applications for adsorption and catalysis. RSC Adv 4:52500–52525CrossRef
64.
go back to reference Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112:933–969CrossRef Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112:933–969CrossRef
65.
go back to reference He M, Yao J, Liu Q, Wang K, Chen F, Wang H (2014) Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Microporous Mesoporous Mater 184: 55–60CrossRef He M, Yao J, Liu Q, Wang K, Chen F, Wang H (2014) Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Microporous Mesoporous Mater 184: 55–60CrossRef
66.
go back to reference Klinowski J, Paz FAA, Silva P, Rocha J (2011) Microwave-assisted synthesis of metal–organic frameworks. Dalton Trans 40:321–330CrossRef Klinowski J, Paz FAA, Silva P, Rocha J (2011) Microwave-assisted synthesis of metal–organic frameworks. Dalton Trans 40:321–330CrossRef
67.
go back to reference Son W-J, Kim J, Kim J, Ahn W-S (2008) Sonochemical synthesis of MOF-5. Chem Commun 47:6336–6338 Son W-J, Kim J, Kim J, Ahn W-S (2008) Sonochemical synthesis of MOF-5. Chem Commun 47:6336–6338
68.
go back to reference Joaristi AM et al (2012) Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Cryst Growth Des 12:3489–3498CrossRef Joaristi AM et al (2012) Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Cryst Growth Des 12:3489–3498CrossRef
69.
go back to reference Stassen I et al (2015) Electrochemical film deposition of the zirconium metal-organic framework UiO-66 and application in a miniaturized sorbent trap. Chem Mater 27: 1801–1807CrossRef Stassen I et al (2015) Electrochemical film deposition of the zirconium metal-organic framework UiO-66 and application in a miniaturized sorbent trap. Chem Mater 27: 1801–1807CrossRef
70.
go back to reference Sakamoto H, Matsuda R, Kitagawa S (2012) Systematic mechanochemical preparation of a series of coordination pillared layer frameworks. Dalton Trans 41:3956–3961CrossRef Sakamoto H, Matsuda R, Kitagawa S (2012) Systematic mechanochemical preparation of a series of coordination pillared layer frameworks. Dalton Trans 41:3956–3961CrossRef
71.
go back to reference Friscic T (2010) New opportunities for materials synthesis using mechanochemistry. J Mater Chem 20:7599–7605CrossRef Friscic T (2010) New opportunities for materials synthesis using mechanochemistry. J Mater Chem 20:7599–7605CrossRef
72.
go back to reference Pichon A, Lazuen-Garay A, James SL (2006) Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 8:211–214CrossRef Pichon A, Lazuen-Garay A, James SL (2006) Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 8:211–214CrossRef
73.
go back to reference Zhan G, Zeng HC (2016) Alternative synthetic approaches for metal–organic frameworks: transformation from solid matters. Chem Commun 53(1):72–81CrossRef Zhan G, Zeng HC (2016) Alternative synthetic approaches for metal–organic frameworks: transformation from solid matters. Chem Commun 53(1):72–81CrossRef
74.
go back to reference Shi Q, Chen Z, Song Z, Li J, Dong J (2011) Synthesis of ZIF-8 and ZIF-67 by steam-assisted conversion and an investigation of their tribological behaviors. Angew Chem Int Ed 50: 672–675CrossRef Shi Q, Chen Z, Song Z, Li J, Dong J (2011) Synthesis of ZIF-8 and ZIF-67 by steam-assisted conversion and an investigation of their tribological behaviors. Angew Chem Int Ed 50: 672–675CrossRef
75.
go back to reference Ahmed I, Jeon J, Khan NA, Jhung SH (2012) Synthesis of a metal − organic framework, iron-Benezenetricarboxylate, from dry gels in the absence of acid and salt. Cryst Growth Des 12:5878–5881CrossRef Ahmed I, Jeon J, Khan NA, Jhung SH (2012) Synthesis of a metal − organic framework, iron-Benezenetricarboxylate, from dry gels in the absence of acid and salt. Cryst Growth Des 12:5878–5881CrossRef
76.
go back to reference Das AK, Vemuri RS, Kutnyakov I, McGrail BP, Motkuri RK (2016) An efficient synthesis strategy for metal-organic frameworks: dry-gel synthesis of MOF-74 framework with high yield and improved performance. Sci Rep 6:28050CrossRef Das AK, Vemuri RS, Kutnyakov I, McGrail BP, Motkuri RK (2016) An efficient synthesis strategy for metal-organic frameworks: dry-gel synthesis of MOF-74 framework with high yield and improved performance. Sci Rep 6:28050CrossRef
77.
go back to reference Carné A, Carbonell C, Imaz I, Maspoch D (2011) Nanoscale metal–organic materials. Chem Soc Rev 40:291–305CrossRef Carné A, Carbonell C, Imaz I, Maspoch D (2011) Nanoscale metal–organic materials. Chem Soc Rev 40:291–305CrossRef
78.
go back to reference Sindoro M, Yanai N, Jee A-Y, Granick S (2014) Colloidal-sized metal organic frameworks: synthesis and applications. Acc Chem Res 47:459–469CrossRef Sindoro M, Yanai N, Jee A-Y, Granick S (2014) Colloidal-sized metal organic frameworks: synthesis and applications. Acc Chem Res 47:459–469CrossRef
79.
go back to reference Masoomi MY, Beheshti S, Morsali A (2015) Shape control of Zn(II) Metal − Organic frameworks by modulation synthesis and their morphology-dependent catalytic performance. Cryst Growth Des 15:2533–2538CrossRef Masoomi MY, Beheshti S, Morsali A (2015) Shape control of Zn(II) Metal − Organic frameworks by modulation synthesis and their morphology-dependent catalytic performance. Cryst Growth Des 15:2533–2538CrossRef
80.
go back to reference Díaz-García M, Mayoral A, Díaz I, Sánchez-Sánchez M (2014) Nanoscaled M-MOF-74 materials prepared at room temperature. Cryst Growth Des 14:2479–2487CrossRef Díaz-García M, Mayoral A, Díaz I, Sánchez-Sánchez M (2014) Nanoscaled M-MOF-74 materials prepared at room temperature. Cryst Growth Des 14:2479–2487CrossRef
81.
go back to reference Bunzen H, Grzywa M, Hambach M, Spirkl S, Volkmer D (2016) From micro to Nano: a toolbox for tuning crystal size and morphology of Benzotriazolate-based Metal − Organic frameworks. Cryst Growth Des 16:3190–3197CrossRef Bunzen H, Grzywa M, Hambach M, Spirkl S, Volkmer D (2016) From micro to Nano: a toolbox for tuning crystal size and morphology of Benzotriazolate-based Metal − Organic frameworks. Cryst Growth Des 16:3190–3197CrossRef
82.
go back to reference Jin L-N, Liu Q, Sun W-Y (2014) An introduction to synthesis and application of nanoscale metal–carboxylate coordination polymers. CrystEngComm 16:3816–3828CrossRef Jin L-N, Liu Q, Sun W-Y (2014) An introduction to synthesis and application of nanoscale metal–carboxylate coordination polymers. CrystEngComm 16:3816–3828CrossRef
83.
go back to reference Flugel EA, Ranft A, Haase F, Lotsch BV (2012) Synthetic routes toward MOF nanomorphologies. J Mater Chem 22:10119–10133CrossRef Flugel EA, Ranft A, Haase F, Lotsch BV (2012) Synthetic routes toward MOF nanomorphologies. J Mater Chem 22:10119–10133CrossRef
84.
go back to reference Diring S, Furukawa S, Takashima Y, Tsuruoka T, Kitagawa S (2010) Controlled Multiscale synthesis of porous coordination polymer in Nano/micro regimes. Chem Mater 22: 4531–4538CrossRef Diring S, Furukawa S, Takashima Y, Tsuruoka T, Kitagawa S (2010) Controlled Multiscale synthesis of porous coordination polymer in Nano/micro regimes. Chem Mater 22: 4531–4538CrossRef
85.
go back to reference Guo H, Zhu Y, Qiu S, Lercher JA, Zhang H (2010) Coordination modulation induced synthesis of Nanoscale Eu1-xTbx- metal-organic frameworks for luminescent thin films. Adv Mater 22:4190–4192CrossRef Guo H, Zhu Y, Qiu S, Lercher JA, Zhang H (2010) Coordination modulation induced synthesis of Nanoscale Eu1-xTbx- metal-organic frameworks for luminescent thin films. Adv Mater 22:4190–4192CrossRef
86.
go back to reference Umemura A, Diring S, Furukawa S, Uehara H, Tsuruoka T, Kitagawa S (2011) Morphology design of porous coordination polymer crystals by coordination modulation. J Am Chem Soc 133:15506–15513CrossRef Umemura A, Diring S, Furukawa S, Uehara H, Tsuruoka T, Kitagawa S (2011) Morphology design of porous coordination polymer crystals by coordination modulation. J Am Chem Soc 133:15506–15513CrossRef
87.
go back to reference Cravillon J, Munzer S, Lohmeier S-J, Feldhoff A, Huber K, Wiebcke M (2009) Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem Mater 21:1410–1412CrossRef Cravillon J, Munzer S, Lohmeier S-J, Feldhoff A, Huber K, Wiebcke M (2009) Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem Mater 21:1410–1412CrossRef
88.
go back to reference Rieter WJ, Taylor KML, An H, Lin W, Lin W (2006) Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. J Am Chem Soc 128:9024–9025CrossRef Rieter WJ, Taylor KML, An H, Lin W, Lin W (2006) Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. J Am Chem Soc 128:9024–9025CrossRef
89.
go back to reference Liu Q, Jin L-N, Sun W-Y (2012) Facile fabrication and adsorption property of a nano/microporous coordination polymer with controllable size and morphology. Chem Commun 48:8814–8816CrossRef Liu Q, Jin L-N, Sun W-Y (2012) Facile fabrication and adsorption property of a nano/microporous coordination polymer with controllable size and morphology. Chem Commun 48:8814–8816CrossRef
90.
go back to reference Carné-Sánchez A, Imaz I, Cano-Sarabia M, Maspoch D (2013) A spray-drying strategy for synthesis of nanoscale metal–organic frameworks and their assembly into hollow superstructures. Nat Chem 5:203–211CrossRef Carné-Sánchez A, Imaz I, Cano-Sarabia M, Maspoch D (2013) A spray-drying strategy for synthesis of nanoscale metal–organic frameworks and their assembly into hollow superstructures. Nat Chem 5:203–211CrossRef
91.
go back to reference Mueller U, Puetter H, Hesse M, Wessel H (2005) Patent WO 2005/049892 Mueller U, Puetter H, Hesse M, Wessel H (2005) Patent WO 2005/049892
92.
go back to reference Gimeno-Fabra M, Munn AS, Stevens LA, Drage TC, Grant DM, Kashtiban RJ, Sloan J, Lester E, Walton RI (2012) Instant MOFs: continuous synthesis of metal–organic frameworks by rapid solvent mixing. Chem Commun 48:10642–10644CrossRef Gimeno-Fabra M, Munn AS, Stevens LA, Drage TC, Grant DM, Kashtiban RJ, Sloan J, Lester E, Walton RI (2012) Instant MOFs: continuous synthesis of metal–organic frameworks by rapid solvent mixing. Chem Commun 48:10642–10644CrossRef
93.
go back to reference Rubio-Martinez M, Batten MP, Polyzos A, Carey K-C, Mardel JI, Lim K-S, Hill MR (2014) Versatile, high quality and scalable continuous flow production of metal-organic frameworks. Sci Rep 4:5443CrossRef Rubio-Martinez M, Batten MP, Polyzos A, Carey K-C, Mardel JI, Lim K-S, Hill MR (2014) Versatile, high quality and scalable continuous flow production of metal-organic frameworks. Sci Rep 4:5443CrossRef
94.
go back to reference Dunne PW, Munn AS, Starkey CL, Huddle TA, Lester EH (2015) Continuous-flow hydrothermal synthesis for the production of inorganic nanomaterials. Article in Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences Dunne PW, Munn AS, Starkey CL, Huddle TA, Lester EH (2015) Continuous-flow hydrothermal synthesis for the production of inorganic nanomaterials. Article in Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences
95.
go back to reference McKinstry C, Cathcart RJ, Cussen EJ, Fletcher AJ, Patwardhan SV, Sefcik J (2016) Scalable continuous solvothermal synthesis of metal organic framework (MOF-5) crystals. Chem Eng J 285:718–725CrossRef McKinstry C, Cathcart RJ, Cussen EJ, Fletcher AJ, Patwardhan SV, Sefcik J (2016) Scalable continuous solvothermal synthesis of metal organic framework (MOF-5) crystals. Chem Eng J 285:718–725CrossRef
96.
go back to reference Garzón-Tovar L, Cano-Sarabia M, Carné-Sánchez A, Carbonell C, Imaz I, Maspoch D (2016) A spray-drying continuous-flow method for simultaneous synthesis and shaping of microspherical high nuclearity MOF beads. React Chem Eng 1:533–539CrossRef Garzón-Tovar L, Cano-Sarabia M, Carné-Sánchez A, Carbonell C, Imaz I, Maspoch D (2016) A spray-drying continuous-flow method for simultaneous synthesis and shaping of microspherical high nuclearity MOF beads. React Chem Eng 1:533–539CrossRef
97.
go back to reference Marquez AG, Horcajada P, Grosso D, Ferey G, Serre C, Sanchez C, Boissiere C (2013) Green scalable aerosol synthesis of porous metal–organic frameworks. Chem Commun 49: 3848–3850CrossRef Marquez AG, Horcajada P, Grosso D, Ferey G, Serre C, Sanchez C, Boissiere C (2013) Green scalable aerosol synthesis of porous metal–organic frameworks. Chem Commun 49: 3848–3850CrossRef
98.
go back to reference Crawford D, Casaban J, Haydon R, Giri N, McNally T, James SL (2015) Synthesis by extrusion: continuous, large-scale preparation of MOFs using little or no solvent. Chem Sci 6:1645–1649CrossRef Crawford D, Casaban J, Haydon R, Giri N, McNally T, James SL (2015) Synthesis by extrusion: continuous, large-scale preparation of MOFs using little or no solvent. Chem Sci 6:1645–1649CrossRef
99.
go back to reference Reinsch H, Waitschat S, Chavan SM, Lillerud KP, Stock N (2016) A facile “green” route for scalable batch production and continuous synthesis of zirconium MOFs. Eur J Inorg Chem 2016:4490–4498CrossRef Reinsch H, Waitschat S, Chavan SM, Lillerud KP, Stock N (2016) A facile “green” route for scalable batch production and continuous synthesis of zirconium MOFs. Eur J Inorg Chem 2016:4490–4498CrossRef
100.
go back to reference Majano G, Pérez-Ramírez J (2013) Scalable room-temperature conversion of copper(II) hydroxide into HKUST-1 (Cu3(btc)2). Adv Mater 25:1052–1057CrossRef Majano G, Pérez-Ramírez J (2013) Scalable room-temperature conversion of copper(II) hydroxide into HKUST-1 (Cu3(btc)2). Adv Mater 25:1052–1057CrossRef
101.
go back to reference Huo J, Brightwell M, El Hankari S, Garai A, Bradshaw D (2013) A versatile, industrially relevant, aqueous room temperature synthesis of HKUST-1 with high space-time yield. J Mater Chem A 1:15220–15223CrossRef Huo J, Brightwell M, El Hankari S, Garai A, Bradshaw D (2013) A versatile, industrially relevant, aqueous room temperature synthesis of HKUST-1 with high space-time yield. J Mater Chem A 1:15220–15223CrossRef
102.
go back to reference Cho H-Y, Kim J, Kim S-N, Ahn W-S (2013) High yield 1-L scale synthesis of ZIF-8 via a sonochemical route. Microporous Mesoporous Mater 169:180–184CrossRef Cho H-Y, Kim J, Kim S-N, Ahn W-S (2013) High yield 1-L scale synthesis of ZIF-8 via a sonochemical route. Microporous Mesoporous Mater 169:180–184CrossRef
103.
go back to reference Ferreira AFP, Santos JC, Plaza MG, Lamia N, Loureiro JM, Rodrigues AE (2011) Suitability of Cu-BTC extrudates for propane–propylene separation by adsorption processes. Chem Eng J 167:1–12CrossRef Ferreira AFP, Santos JC, Plaza MG, Lamia N, Loureiro JM, Rodrigues AE (2011) Suitability of Cu-BTC extrudates for propane–propylene separation by adsorption processes. Chem Eng J 167:1–12CrossRef
104.
go back to reference Ren J, Musyoka NM, Langmi HW, Swartbooi A, North BC, Mathe M (2015) A more efficient way to shape metal-organic framework (MOF) powder materials for hydrogen storage applications. Int J Hydrog Energy 40:4617–4622CrossRef Ren J, Musyoka NM, Langmi HW, Swartbooi A, North BC, Mathe M (2015) A more efficient way to shape metal-organic framework (MOF) powder materials for hydrogen storage applications. Int J Hydrog Energy 40:4617–4622CrossRef
105.
go back to reference Moitra N, Fukumoto S, Reboul J, Sumida K, Zhu Y, Nakanishi K, Furukawa S, Kitagawa S, Kanamori K (2015) Mechanically stable, hierarchically porous Cu3(btc)2 (HKUST-1) monoliths via direct conversion of copper(II) hydroxide-based monoliths. Chem Commun 51:3511–3514CrossRef Moitra N, Fukumoto S, Reboul J, Sumida K, Zhu Y, Nakanishi K, Furukawa S, Kitagawa S, Kanamori K (2015) Mechanically stable, hierarchically porous Cu3(btc)2 (HKUST-1) monoliths via direct conversion of copper(II) hydroxide-based monoliths. Chem Commun 51:3511–3514CrossRef
106.
go back to reference Czaja AU, Trukhan N, Muller U (2009) Industrial applications of metal–organic frameworks. Chem Soc Rev 38:1284–1293CrossRef Czaja AU, Trukhan N, Muller U (2009) Industrial applications of metal–organic frameworks. Chem Soc Rev 38:1284–1293CrossRef
107.
go back to reference Silva P, Vilela SMF, Tomé JPC, Paz FAA (2015) Multifunctional metal–organic frameworks: from academic to industrial applications. Chem Soc Rev 44:6774–6803CrossRef Silva P, Vilela SMF, Tomé JPC, Paz FAA (2015) Multifunctional metal–organic frameworks: from academic to industrial applications. Chem Soc Rev 44:6774–6803CrossRef
108.
go back to reference Zacher D, Shekhah O, Wöll C, Fischer RA (2009) Thin films of metal–organic frameworks. Chem Soc Rev 38:1418–1429CrossRef Zacher D, Shekhah O, Wöll C, Fischer RA (2009) Thin films of metal–organic frameworks. Chem Soc Rev 38:1418–1429CrossRef
109.
go back to reference Shekhah O, Liu J, Fischer RA, Woll C (2011) MOF thin films: existing and future applications. Chem Soc Rev 40:1081–1106CrossRef Shekhah O, Liu J, Fischer RA, Woll C (2011) MOF thin films: existing and future applications. Chem Soc Rev 40:1081–1106CrossRef
110.
go back to reference Zacher D, Schmid R, Woll C, Fischer RA (2011) Surface chemistry of metal–organic frameworks at the liquid–solid Interface. Angew Chem Int Ed 50:176–199CrossRef Zacher D, Schmid R, Woll C, Fischer RA (2011) Surface chemistry of metal–organic frameworks at the liquid–solid Interface. Angew Chem Int Ed 50:176–199CrossRef
111.
go back to reference Bradshaw D, Garai A, Huo J (2012) Metal–organic framework growth at functional interfaces: thin films and composites for diverse applications. Chem Soc Rev 41:2344–2381CrossRef Bradshaw D, Garai A, Huo J (2012) Metal–organic framework growth at functional interfaces: thin films and composites for diverse applications. Chem Soc Rev 41:2344–2381CrossRef
112.
go back to reference Tsotsalas M, Umemura A, Kim F, Sakata Y, Reboul J, Kitagawa S, Furukawa S (2012) Crystal morphology-directed framework orientation in porous coordination polymer films and freestanding membranes via Langmuir–Blodgettry. J Mater Chem 22:10159–10165CrossRef Tsotsalas M, Umemura A, Kim F, Sakata Y, Reboul J, Kitagawa S, Furukawa S (2012) Crystal morphology-directed framework orientation in porous coordination polymer films and freestanding membranes via Langmuir–Blodgettry. J Mater Chem 22:10159–10165CrossRef
113.
go back to reference Stassen I, Styles M, Grenci G, Gorp HV, Vanderlinden W, De Feyter S, Falcaro P, De Vos D, Vereecken P, Ameloot R (2015) Chemical vapour deposition of zeolitic imidazolate framework thin films. Nat Mat 15:304–310 Stassen I, Styles M, Grenci G, Gorp HV, Vanderlinden W, De Feyter S, Falcaro P, De Vos D, Vereecken P, Ameloot R (2015) Chemical vapour deposition of zeolitic imidazolate framework thin films. Nat Mat 15:304–310
114.
go back to reference Toyao T, Liang K, Okada K, Ricco R, Styles MJ, Tokudome Y, Horiuchi Y, Hill AJ, Takahashi M, Matsuoka M, Falcaro P (2015) Positioning of the HKUST-1 metal–organic framework (Cu3(BTC)2) through conversion from insoluble Cu-based precursors. Inorg Chem Front 2:434–441CrossRef Toyao T, Liang K, Okada K, Ricco R, Styles MJ, Tokudome Y, Horiuchi Y, Hill AJ, Takahashi M, Matsuoka M, Falcaro P (2015) Positioning of the HKUST-1 metal–organic framework (Cu3(BTC)2) through conversion from insoluble Cu-based precursors. Inorg Chem Front 2:434–441CrossRef
115.
go back to reference Li Y-S, Bux H, Feldhoff A, Li G-L, Yang W-S, Caro J (2010) Controllable synthesis of metal–organic frameworks: from MOF Nanorods to oriented MOF membranes. Adv Mater 22: 3322–3326CrossRef Li Y-S, Bux H, Feldhoff A, Li G-L, Yang W-S, Caro J (2010) Controllable synthesis of metal–organic frameworks: from MOF Nanorods to oriented MOF membranes. Adv Mater 22: 3322–3326CrossRef
116.
go back to reference Qiu S, Xue M, Zhu G (2014) Metal-organic framework membranes: from synthesis to separation application. Chem Soc Rev 43:6116–6140CrossRef Qiu S, Xue M, Zhu G (2014) Metal-organic framework membranes: from synthesis to separation application. Chem Soc Rev 43:6116–6140CrossRef
117.
go back to reference Kong L, Zhang X, Liu Y, Li S, Liu H, Qiu J, Yeung KL (2014) In situ fabrication of high-permeance ZIF-8 tubular membranes in a continuous flow system. Mater Chem Phys 148: 10–16CrossRef Kong L, Zhang X, Liu Y, Li S, Liu H, Qiu J, Yeung KL (2014) In situ fabrication of high-permeance ZIF-8 tubular membranes in a continuous flow system. Mater Chem Phys 148: 10–16CrossRef
118.
go back to reference Aguilera-Sigalat J, Bradshaw D (2016) Synthesis and applications of metal-organic framework-quantum dot (QD@MOF) composites. Coord Chem Rev 307:267–291CrossRef Aguilera-Sigalat J, Bradshaw D (2016) Synthesis and applications of metal-organic framework-quantum dot (QD@MOF) composites. Coord Chem Rev 307:267–291CrossRef
119.
go back to reference Liang K, Carbonell C, Styles MJ, Ricco R, Cui J, Richardson JJ, Maspoch D, Caruso F, Falcaro P (2015) Biomimetic replication of microscopic metal–organic framework patterns using printed protein patterns. Adv Mater 27:7293–7298CrossRef Liang K, Carbonell C, Styles MJ, Ricco R, Cui J, Richardson JJ, Maspoch D, Caruso F, Falcaro P (2015) Biomimetic replication of microscopic metal–organic framework patterns using printed protein patterns. Adv Mater 27:7293–7298CrossRef
120.
go back to reference Zhu Q-L, Xu Q (2014) Metal–organic framework composites. Chem Soc Rev 43:5468–5512CrossRef Zhu Q-L, Xu Q (2014) Metal–organic framework composites. Chem Soc Rev 43:5468–5512CrossRef
121.
go back to reference Ricco R, Malfatti L, Takahashi M, Hillad AJ, Falcaro P (2013) Applications of magnetic metal–organic framework composites. J Mater Chem A 1:13033–13045CrossRef Ricco R, Malfatti L, Takahashi M, Hillad AJ, Falcaro P (2013) Applications of magnetic metal–organic framework composites. J Mater Chem A 1:13033–13045CrossRef
122.
go back to reference Ahmed I, Jhung SH (2014) Composites of metal–organic frameworks: preparation and application in adsorption. Mater Today 17:136–146CrossRef Ahmed I, Jhung SH (2014) Composites of metal–organic frameworks: preparation and application in adsorption. Mater Today 17:136–146CrossRef
123.
go back to reference Zornoza B, Tellez C, Coronas J, Gascon J, Kapteijn F (2013) Metal organic framework based mixed matrix membranes: an increasingly important field of research with a large application potential. Microporous Mesoporous Mater 166:67–78CrossRef Zornoza B, Tellez C, Coronas J, Gascon J, Kapteijn F (2013) Metal organic framework based mixed matrix membranes: an increasingly important field of research with a large application potential. Microporous Mesoporous Mater 166:67–78CrossRef
124.
go back to reference Baxter EF, Bennett TD, Mellot-Draznieks C, Gervais C, Blanc F, Cheetham AK (2015) Combined experimental and computational NMR study of crystalline and amorphous zeolitic imidazolate frameworks. Phys Chem Chem Phys 17:25191–25196CrossRef Baxter EF, Bennett TD, Mellot-Draznieks C, Gervais C, Blanc F, Cheetham AK (2015) Combined experimental and computational NMR study of crystalline and amorphous zeolitic imidazolate frameworks. Phys Chem Chem Phys 17:25191–25196CrossRef
125.
go back to reference Mazaj M, Kaucic V, Logar NZ (2016) Chemistry of metal-organic frameworks monitored by advanced X-ray diffraction and scattering techniques. Acta Chim Slov 63:440–458CrossRef Mazaj M, Kaucic V, Logar NZ (2016) Chemistry of metal-organic frameworks monitored by advanced X-ray diffraction and scattering techniques. Acta Chim Slov 63:440–458CrossRef
126.
go back to reference Bordiga S, Bonino F, Lillerud KP, Lamberti C (2010) X-ray absorption spectroscopies: useful tools to understand metallorganic frameworks structure and reactivity. Chem Soc Rev 39:4885–4927CrossRef Bordiga S, Bonino F, Lillerud KP, Lamberti C (2010) X-ray absorption spectroscopies: useful tools to understand metallorganic frameworks structure and reactivity. Chem Soc Rev 39:4885–4927CrossRef
127.
go back to reference Suga M, Asahina S, Sakuda Y, Kazumori H, Nishiyama H, Nokuo T, Alfredsson V, Kjellman T, Stevens SM, Cho HS, Cho M, Han L, Che S, Anderson MW, Schüth F, Deng H, Yaghi OM, Liu Z, Jeong HY, Stein A, Sakamoto K, Ryoo R, Terasaki O (2014) Recent progress in scanning electron microscopy for the characterization of fine structural details of nano materials. Prog Solid State Chem 42:1–21CrossRef Suga M, Asahina S, Sakuda Y, Kazumori H, Nishiyama H, Nokuo T, Alfredsson V, Kjellman T, Stevens SM, Cho HS, Cho M, Han L, Che S, Anderson MW, Schüth F, Deng H, Yaghi OM, Liu Z, Jeong HY, Stein A, Sakamoto K, Ryoo R, Terasaki O (2014) Recent progress in scanning electron microscopy for the characterization of fine structural details of nano materials. Prog Solid State Chem 42:1–21CrossRef
128.
go back to reference Wiktor C, Turner S, Zacher D, Fischer RA, Tendeloo GV (2012) Imaging of intact MOF-5 nanocrystals by advanced TEM at liquid nitrogen temperature. Microporous and Mesoporous Mater 162:131–135CrossRef Wiktor C, Turner S, Zacher D, Fischer RA, Tendeloo GV (2012) Imaging of intact MOF-5 nanocrystals by advanced TEM at liquid nitrogen temperature. Microporous and Mesoporous Mater 162:131–135CrossRef
129.
go back to reference Mu B, Walton KS (2011) Thermal analysis and heat capacity study of metal-organic frameworks. J Phys Chem C 115:22748–22754CrossRef Mu B, Walton KS (2011) Thermal analysis and heat capacity study of metal-organic frameworks. J Phys Chem C 115:22748–22754CrossRef
130.
go back to reference Wang TC, Bury W, Gómez-Gualdrón DA, Vermeulen NA, Mondloch JE, Deria P, Zhang K, Moghadam PZ, Sarjeant AA, Snurr RQ, Stoddart JF, Hupp JT, Farha OK (2015) Ultrahigh surface area zirconium MOFs and insights into the applicability of the BET theory. J Am Chem Soc 137:3585–3591CrossRef Wang TC, Bury W, Gómez-Gualdrón DA, Vermeulen NA, Mondloch JE, Deria P, Zhang K, Moghadam PZ, Sarjeant AA, Snurr RQ, Stoddart JF, Hupp JT, Farha OK (2015) Ultrahigh surface area zirconium MOFs and insights into the applicability of the BET theory. J Am Chem Soc 137:3585–3591CrossRef
131.
go back to reference Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87(1-19):1051–1069 Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87(1-19):1051–1069
132.
go back to reference Singh M, Kumar D, Thomas J, Ramanan A (2010) Crystallization of copper(II) sulfate based minerals and MOF from solution: chemical insights into the supramolecular interactions. J Chem Sci 122:757–769CrossRef Singh M, Kumar D, Thomas J, Ramanan A (2010) Crystallization of copper(II) sulfate based minerals and MOF from solution: chemical insights into the supramolecular interactions. J Chem Sci 122:757–769CrossRef
133.
go back to reference Millange F, Medina MI, Guillou N, Ferey G, Golden KM, Walton RI (2010) Time-resolved in situ diffraction study of the Solvothermal crystallization of some prototypical metal–organic frameworks. Angew Chem Int Ed 49:763–766CrossRef Millange F, Medina MI, Guillou N, Ferey G, Golden KM, Walton RI (2010) Time-resolved in situ diffraction study of the Solvothermal crystallization of some prototypical metal–organic frameworks. Angew Chem Int Ed 49:763–766CrossRef
134.
go back to reference Zahn G, Zerner P, Lippke J, Kempf FL, Lilienthal S, Schröder CA, Schneider AM, Behrens P (2014) Insight into the mechanism of modulated synthesis: in situ synchrotron diffraction studies on the formation of Zr-fumarate MOF. Cryst Eng Comm 16:9198–9207CrossRef Zahn G, Zerner P, Lippke J, Kempf FL, Lilienthal S, Schröder CA, Schneider AM, Behrens P (2014) Insight into the mechanism of modulated synthesis: in situ synchrotron diffraction studies on the formation of Zr-fumarate MOF. Cryst Eng Comm 16:9198–9207CrossRef
135.
go back to reference Shoaee M, Anderson MW, Attfield MP (2008) Crystal growth of the Nanoporous metal–organic framework HKUST-1 revealed by in situ atomic force microscopy. Angew Chem Int Ed 47:8525–8528CrossRef Shoaee M, Anderson MW, Attfield MP (2008) Crystal growth of the Nanoporous metal–organic framework HKUST-1 revealed by in situ atomic force microscopy. Angew Chem Int Ed 47:8525–8528CrossRef
136.
go back to reference Patterson JP, Abellan P, Denny MS Jr, Park C, Browning ND, Cohen SM, Evans JE, Gianneschi NC (2015) Observing the growth of metal–organic frameworks by in situ liquid cell transmission electron microscopy. J Am Chem Soc 137:7322–7328CrossRef Patterson JP, Abellan P, Denny MS Jr, Park C, Browning ND, Cohen SM, Evans JE, Gianneschi NC (2015) Observing the growth of metal–organic frameworks by in situ liquid cell transmission electron microscopy. J Am Chem Soc 137:7322–7328CrossRef
137.
go back to reference Bai Y, Dou Y, Xie L-H, Rutledge W, Li J-R, Zhou H-C (2016) Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chem Soc Rev 45:2327–2367CrossRef Bai Y, Dou Y, Xie L-H, Rutledge W, Li J-R, Zhou H-C (2016) Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chem Soc Rev 45:2327–2367CrossRef
138.
go back to reference Kuppler RJ, Timmons DJ, Fang Q-R, Li J-R, Makal TA, Young MD, Yuan D, Zhao D, Zhuang W, Zhou H-C (2009) Potential applications of metal-organic frameworks. Coord Chem Rev 253:3042–3066CrossRef Kuppler RJ, Timmons DJ, Fang Q-R, Li J-R, Makal TA, Young MD, Yuan D, Zhao D, Zhuang W, Zhou H-C (2009) Potential applications of metal-organic frameworks. Coord Chem Rev 253:3042–3066CrossRef
139.
go back to reference Rowsell JLC, Spencer EC, Eckert J, Howard JAK, Yaghi OM (2005) Gas adsorption sites in a large-pore metal-organic framework. Science 309:1350–1354CrossRef Rowsell JLC, Spencer EC, Eckert J, Howard JAK, Yaghi OM (2005) Gas adsorption sites in a large-pore metal-organic framework. Science 309:1350–1354CrossRef
140.
go back to reference Millward AR, Yaghi OM (2005) Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999CrossRef Millward AR, Yaghi OM (2005) Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999CrossRef
141.
go back to reference Dinca M, Long JR (2008) Hydrogen storage in microporous metal–organic frameworks with exposed metal sites. Angew Chem Int Ed 47:6766–6779CrossRef Dinca M, Long JR (2008) Hydrogen storage in microporous metal–organic frameworks with exposed metal sites. Angew Chem Int Ed 47:6766–6779CrossRef
142.
go back to reference Yan Y, Blake AJ, Lewis W, Barnett SA, Dailly A, Champness NR, Schroder M (2011) Modifying cage structures in metal–organic polyhedral frameworks for H2 storage. Chem Eur J 17:11162–11170CrossRef Yan Y, Blake AJ, Lewis W, Barnett SA, Dailly A, Champness NR, Schroder M (2011) Modifying cage structures in metal–organic polyhedral frameworks for H2 storage. Chem Eur J 17:11162–11170CrossRef
143.
go back to reference Schlichtenmayer M, Hirscher M (2012) Nanosponges for hydrogen storage. J Mater Chem 22:10134–10143CrossRef Schlichtenmayer M, Hirscher M (2012) Nanosponges for hydrogen storage. J Mater Chem 22:10134–10143CrossRef
144.
go back to reference Liu J, Thallapally PK, McGrail BP, Brown DR, Liu J (2012) Progress in adsorption-based CO2 capture by metal–organic frameworks. Chem Soc Rev 41:2308–2322CrossRef Liu J, Thallapally PK, McGrail BP, Brown DR, Liu J (2012) Progress in adsorption-based CO2 capture by metal–organic frameworks. Chem Soc Rev 41:2308–2322CrossRef
145.
go back to reference Barea E, Montoro C, Navarro JAR (2014) Toxic gas removal – metal–organic frameworks for the capture and degradation of toxic gases and vapours. Chem Soc Rev 43:5419–5430CrossRef Barea E, Montoro C, Navarro JAR (2014) Toxic gas removal – metal–organic frameworks for the capture and degradation of toxic gases and vapours. Chem Soc Rev 43:5419–5430CrossRef
146.
go back to reference Sabouni R, Kazemian H, Rohani S (2014) Carbon dioxide capturing technologies: a review focusing on metal organic framework materials (MOFs). Environ Sci Pollut Res 21: 5427–5449CrossRef Sabouni R, Kazemian H, Rohani S (2014) Carbon dioxide capturing technologies: a review focusing on metal organic framework materials (MOFs). Environ Sci Pollut Res 21: 5427–5449CrossRef
147.
go back to reference He Y, Zhou W, Qian G, Chen B (2014) Methane storage in metal–organic frameworks. Chem Soc Rev 43:5657–5678CrossRef He Y, Zhou W, Qian G, Chen B (2014) Methane storage in metal–organic frameworks. Chem Soc Rev 43:5657–5678CrossRef
148.
go back to reference Stoeck U, Senkovska I, Bon V, Krause S, Kaskel S (2015) Assembly of metal–organic polyhedra into highly porous frameworks for ethene delivery. Chem Commun 51:1046–1049CrossRef Stoeck U, Senkovska I, Bon V, Krause S, Kaskel S (2015) Assembly of metal–organic polyhedra into highly porous frameworks for ethene delivery. Chem Commun 51:1046–1049CrossRef
149.
go back to reference Koh HS, Rana MK, Wong-Foy AG, Siegel DJ (2015) Predicting methane storage in open-metal-site Metal − Organic frameworks. J Phys Chem C 119:13451–13458CrossRef Koh HS, Rana MK, Wong-Foy AG, Siegel DJ (2015) Predicting methane storage in open-metal-site Metal − Organic frameworks. J Phys Chem C 119:13451–13458CrossRef
150.
go back to reference Banerjee D, Cairns AJ, Liu J, Motkuri RK, Nune SK, Fernandez CA, Krishna R, Strachan DM, Thallapally PK (2015) Potential of Metal − Organic frameworks for separation of xenon and krypton. Acc Chem Res 48:211–219CrossRef Banerjee D, Cairns AJ, Liu J, Motkuri RK, Nune SK, Fernandez CA, Krishna R, Strachan DM, Thallapally PK (2015) Potential of Metal − Organic frameworks for separation of xenon and krypton. Acc Chem Res 48:211–219CrossRef
151.
go back to reference Liu B (2012) Metal–organic framework-based devices: separation and sensors. J Mater Chem 22:10094–10101CrossRef Liu B (2012) Metal–organic framework-based devices: separation and sensors. J Mater Chem 22:10094–10101CrossRef
152.
go back to reference Lee CY, Bae Y-S, Jeong NC, Farha OK, Sarjeant AA, Stern CL, Nickias P, Snurr RQ, Hupp JT, Nguyen ST (2011) Kinetic separation of propene and propane in metal-organic frameworks: controlling diffusion rates in plate-shaped crystals via tuning of pore apertures and crystallite aspect ratios. J Am Chem Soc 133:5228–5231CrossRef Lee CY, Bae Y-S, Jeong NC, Farha OK, Sarjeant AA, Stern CL, Nickias P, Snurr RQ, Hupp JT, Nguyen ST (2011) Kinetic separation of propene and propane in metal-organic frameworks: controlling diffusion rates in plate-shaped crystals via tuning of pore apertures and crystallite aspect ratios. J Am Chem Soc 133:5228–5231CrossRef
153.
go back to reference Chen YF, Lee JY, Babarao R, Li J, Jiang JW (2010) A highly hydrophobic metal-organic framework Zn(BDC)(TED)0.5 for adsorption and separation of CH3OH/H2O and CO2/CH4: an integrated experimental and simulation study. J Phys Chem C 114:6602–6609CrossRef Chen YF, Lee JY, Babarao R, Li J, Jiang JW (2010) A highly hydrophobic metal-organic framework Zn(BDC)(TED)0.5 for adsorption and separation of CH3OH/H2O and CO2/CH4: an integrated experimental and simulation study. J Phys Chem C 114:6602–6609CrossRef
154.
go back to reference Liu J, Chen L, Cui H, Zhang J, Zhang L, Su C-Y (2014) Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem Soc Rev 43:6011–6061CrossRef Liu J, Chen L, Cui H, Zhang J, Zhang L, Su C-Y (2014) Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem Soc Rev 43:6011–6061CrossRef
155.
go back to reference Valvekens P, Vermoortele F, De Vos D (2013) Metal–organic frameworks as catalysts: the role of metal active sites. Cat Sci Technol 3:1435–1445CrossRef Valvekens P, Vermoortele F, De Vos D (2013) Metal–organic frameworks as catalysts: the role of metal active sites. Cat Sci Technol 3:1435–1445CrossRef
156.
go back to reference Dhakshinamoorthy A, Opanasenko M, Cejka J, Garcia H (2013) Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals. Cat Sci Technol 3:2509–2540CrossRef Dhakshinamoorthy A, Opanasenko M, Cejka J, Garcia H (2013) Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals. Cat Sci Technol 3:2509–2540CrossRef
157.
go back to reference Ranocchiari M, van Bokhoven JA (2011) Catalysis by metal–organic frameworks: fundamentals and opportunities. Phys Chem Chem Phys 13:6388–6396CrossRef Ranocchiari M, van Bokhoven JA (2011) Catalysis by metal–organic frameworks: fundamentals and opportunities. Phys Chem Chem Phys 13:6388–6396CrossRef
158.
go back to reference Corma A, García H, Llabrés i Xamena FX (2010) Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev 110:4606–4655CrossRef Corma A, García H, Llabrés i Xamena FX (2010) Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev 110:4606–4655CrossRef
159.
go back to reference Kurmoo M (2009) Magnetic metal–organic frameworks. Chem Soc Rev 38:1353–1379CrossRef Kurmoo M (2009) Magnetic metal–organic frameworks. Chem Soc Rev 38:1353–1379CrossRef
160.
go back to reference Ferrando-Soria J, Ruiz-García R, Cano J, Stiriba S-E, Vallejo J, Castro I, Julve M, Lloret F, Amorós P, Pasán J, Ruiz-Pérez C, Journaux Y, Pardo E (2012) Reversible Solvatomagnetic switching in a spongelike manganese(II)–copper(II) 3D open framework with a Pillared Square/octagonal layer architecture. Chem Eur J 18:1608–1617CrossRef Ferrando-Soria J, Ruiz-García R, Cano J, Stiriba S-E, Vallejo J, Castro I, Julve M, Lloret F, Amorós P, Pasán J, Ruiz-Pérez C, Journaux Y, Pardo E (2012) Reversible Solvatomagnetic switching in a spongelike manganese(II)–copper(II) 3D open framework with a Pillared Square/octagonal layer architecture. Chem Eur J 18:1608–1617CrossRef
161.
go back to reference Dhakshinamoorthy A, Asiri AM, García H (2016) Metal–Organic Framework (MOF) compounds: photocatalysts for redox reactions and solar fuel production. Angew Chem Int Ed 55:5414–5445CrossRef Dhakshinamoorthy A, Asiri AM, García H (2016) Metal–Organic Framework (MOF) compounds: photocatalysts for redox reactions and solar fuel production. Angew Chem Int Ed 55:5414–5445CrossRef
162.
go back to reference Mondloch JE, Katz MJ, Isley WC III, Ghosh P, Liao P, Bury W, Wagner GW, Hall MG, DeCoste JB, Peterson GW, Snurr RQ, Cramer CJ, Hupp JT, Farha OK (2015) Destruction of chemical warfare agents using metal–organic frameworks. Nat Mater 14:512–516CrossRef Mondloch JE, Katz MJ, Isley WC III, Ghosh P, Liao P, Bury W, Wagner GW, Hall MG, DeCoste JB, Peterson GW, Snurr RQ, Cramer CJ, Hupp JT, Farha OK (2015) Destruction of chemical warfare agents using metal–organic frameworks. Nat Mater 14:512–516CrossRef
163.
go back to reference Li N, Zhu Q, Yang Y, Huang J, Dang X, Chen H (2015) A novel dispersive solid-phase extraction method using metal-organic framework MIL-101 as the adsorbent for the analysis of benzophenones in toner. Talanta 132:713–718CrossRef Li N, Zhu Q, Yang Y, Huang J, Dang X, Chen H (2015) A novel dispersive solid-phase extraction method using metal-organic framework MIL-101 as the adsorbent for the analysis of benzophenones in toner. Talanta 132:713–718CrossRef
164.
go back to reference Ramaswamy P, Wonga NE, Shimizu GKH (2014) MOFs as proton conductors – challenges and opportunities. Chem Soc Rev 43:5913–5932CrossRef Ramaswamy P, Wonga NE, Shimizu GKH (2014) MOFs as proton conductors – challenges and opportunities. Chem Soc Rev 43:5913–5932CrossRef
165.
go back to reference Kreno LE, Leong K, Farha OK, Allendorf M, Duyne RPV, Hupp JT (2012) Metal-organic framework materials as chemical sensors. Chem Rev 112:1105–1125CrossRef Kreno LE, Leong K, Farha OK, Allendorf M, Duyne RPV, Hupp JT (2012) Metal-organic framework materials as chemical sensors. Chem Rev 112:1105–1125CrossRef
166.
go back to reference Gu Z-Y, Yang C-X, Chang N, Yan X-Y (2012) Metal-Organic frameworks for analytical chemistry: from sample collection to chromatographic separation. Acc Chem Res 45: 734–745CrossRef Gu Z-Y, Yang C-X, Chang N, Yan X-Y (2012) Metal-Organic frameworks for analytical chemistry: from sample collection to chromatographic separation. Acc Chem Res 45: 734–745CrossRef
167.
go back to reference Park JH, Choi KM, Jeon HJ, Choi YJ, Kang JK (2015) In-situ observation for growth of hierarchical metal-organic frameworks and their self sequestering mechanism for gas storage. Sci Rep 5:12045CrossRef Park JH, Choi KM, Jeon HJ, Choi YJ, Kang JK (2015) In-situ observation for growth of hierarchical metal-organic frameworks and their self sequestering mechanism for gas storage. Sci Rep 5:12045CrossRef
168.
go back to reference Bradshaw D, El-Hankari S, Lupica-Spagnolo L (2014) Supramolecular templating of hierarchically porous metal–organic frameworks. Chem Soc Rev 43:5431–5443CrossRef Bradshaw D, El-Hankari S, Lupica-Spagnolo L (2014) Supramolecular templating of hierarchically porous metal–organic frameworks. Chem Soc Rev 43:5431–5443CrossRef
169.
go back to reference Senkovska I, Kaskel S (2014) Ultrahigh porosity in mesoporous MOFs: promises and limitations. Chem Commun 50:7089–7098CrossRef Senkovska I, Kaskel S (2014) Ultrahigh porosity in mesoporous MOFs: promises and limitations. Chem Commun 50:7089–7098CrossRef
170.
go back to reference Song L, Zhang J, Sun L, Xu F, Li F, Zhang H, Si X, Jiao C, Li Z, Liu S, Liu Y, Zhou H, Sun D, Du Y, Caoh Z, Gabelica Z (2012) Mesoporous metal–organic frameworks: design and applications. Energy Environ Sci 5:7508–7520CrossRef Song L, Zhang J, Sun L, Xu F, Li F, Zhang H, Si X, Jiao C, Li Z, Liu S, Liu Y, Zhou H, Sun D, Du Y, Caoh Z, Gabelica Z (2012) Mesoporous metal–organic frameworks: design and applications. Energy Environ Sci 5:7508–7520CrossRef
171.
go back to reference Xuan W, Zhu C, Liu Y, Cui Y (2012) Mesoporous metal–organic framework materials. Chem Soc Rev 41:1677–1695CrossRef Xuan W, Zhu C, Liu Y, Cui Y (2012) Mesoporous metal–organic framework materials. Chem Soc Rev 41:1677–1695CrossRef
172.
go back to reference Ahmed A, Hodgson N, Barrow M, Clowes R, Robertson CM, Steiner A, McKeown P, Bradshaw D, Myersa P, Zhang H (2014) Macroporous metal–organic framework microparticles with improved liquid phase separation. J Mater Chem A 2:9085–9090CrossRef Ahmed A, Hodgson N, Barrow M, Clowes R, Robertson CM, Steiner A, McKeown P, Bradshaw D, Myersa P, Zhang H (2014) Macroporous metal–organic framework microparticles with improved liquid phase separation. J Mater Chem A 2:9085–9090CrossRef
173.
go back to reference Li T, Kozlowski MT, Doud EA, Blakely MN, Rosi NL (2013) Stepwise ligand exchange for the preparation of a family of mesoporous MOFs. J Am Chem Soc 135:11688–11691CrossRef Li T, Kozlowski MT, Doud EA, Blakely MN, Rosi NL (2013) Stepwise ligand exchange for the preparation of a family of mesoporous MOFs. J Am Chem Soc 135:11688–11691CrossRef
174.
go back to reference Deng H, Grunder S, Cordova KE, Valente C, Furukawa H, Hmadeh M, Gándara F, Whalley AC, Liu Z, Asahina S, Kazumori H, O’Keeffe M, Terasaki O, Stoddart JF, Yaghi OM (2012) Large-pore apertures in a series of metal-organic frameworks. Science 336:1018–1023CrossRef Deng H, Grunder S, Cordova KE, Valente C, Furukawa H, Hmadeh M, Gándara F, Whalley AC, Liu Z, Asahina S, Kazumori H, O’Keeffe M, Terasaki O, Stoddart JF, Yaghi OM (2012) Large-pore apertures in a series of metal-organic frameworks. Science 336:1018–1023CrossRef
175.
go back to reference Chen B, Eddaoudi M, Hyde ST, O’Keeffe M, Yaghi OM (2001) Interwoven metal-organic framework on a periodic minimal surface with extra-large pores. Science 291:1021–1023CrossRef Chen B, Eddaoudi M, Hyde ST, O’Keeffe M, Yaghi OM (2001) Interwoven metal-organic framework on a periodic minimal surface with extra-large pores. Science 291:1021–1023CrossRef
176.
go back to reference Shekhah O, Wang H, Paradinas M, Ocal C, Schüpbach B, Terfort A, Zacher D, Fischer RA, Wöll C (2009) Controlling interpenetration in metal–organic frameworks by liquid-phase epitaxy. Nat Mater 8:481–484CrossRef Shekhah O, Wang H, Paradinas M, Ocal C, Schüpbach B, Terfort A, Zacher D, Fischer RA, Wöll C (2009) Controlling interpenetration in metal–organic frameworks by liquid-phase epitaxy. Nat Mater 8:481–484CrossRef
177.
go back to reference Farha OK, Malliakas CD, Kanatzidis MG, Hupp JT (2010) Control over catenation in metal-organic frameworks via rational design of the organic building block. J Am Chem Soc 132:950–952CrossRef Farha OK, Malliakas CD, Kanatzidis MG, Hupp JT (2010) Control over catenation in metal-organic frameworks via rational design of the organic building block. J Am Chem Soc 132:950–952CrossRef
178.
go back to reference Seoane B, Dikhtiarenko A, Mayoral A, Tellez C, Coronas J, Kapteijna F, Gascon J (2015) Metal organic framework synthesis in the presence of surfactants: towards hierarchical MOFs? CrystEngComm 17:1693–1700CrossRef Seoane B, Dikhtiarenko A, Mayoral A, Tellez C, Coronas J, Kapteijna F, Gascon J (2015) Metal organic framework synthesis in the presence of surfactants: towards hierarchical MOFs? CrystEngComm 17:1693–1700CrossRef
179.
go back to reference Zhao Y, Zhang J, Han B, Song J, Li J, Wang Q (2011) Metal–organic framework Nanospheres with well-ordered mesopores synthesized in an ionic liquid/CO2/surfactant system. Angew Chem Int Ed 50:636–639CrossRef Zhao Y, Zhang J, Han B, Song J, Li J, Wang Q (2011) Metal–organic framework Nanospheres with well-ordered mesopores synthesized in an ionic liquid/CO2/surfactant system. Angew Chem Int Ed 50:636–639CrossRef
180.
go back to reference Qiu L-G, Xu T, Li Z-Q, Wang W, Wu Y, Jiang X, Tian X-Y, Zhang L-D (2008) Hierarchically micro- and mesoporous metal–organic frameworks with tunable porosity. Angew Chem Int Ed 47:9487–9491CrossRef Qiu L-G, Xu T, Li Z-Q, Wang W, Wu Y, Jiang X, Tian X-Y, Zhang L-D (2008) Hierarchically micro- and mesoporous metal–organic frameworks with tunable porosity. Angew Chem Int Ed 47:9487–9491CrossRef
181.
go back to reference Deng H, Doonan CJ, Furukawa H, Ferreira RB, Towne J, Knobler CB, Wang B, Yaghi OM (2010) Multiple functional groups of varying ratios in metal-organic frameworks. Science 327:846–850CrossRef Deng H, Doonan CJ, Furukawa H, Ferreira RB, Towne J, Knobler CB, Wang B, Yaghi OM (2010) Multiple functional groups of varying ratios in metal-organic frameworks. Science 327:846–850CrossRef
182.
go back to reference Kong X, Deng H, Yan F, Kim J, Swisher JA, Smit B, Yaghi OM, Reimer JA (2013) Mapping of functional groups in metal-organic frameworks. Science 341:882–885CrossRef Kong X, Deng H, Yan F, Kim J, Swisher JA, Smit B, Yaghi OM, Reimer JA (2013) Mapping of functional groups in metal-organic frameworks. Science 341:882–885CrossRef
183.
go back to reference Cohen SM (2012) Postsynthetic methods for the functionalization of metal–organic frameworks. Chem Rev 112:970–1000CrossRef Cohen SM (2012) Postsynthetic methods for the functionalization of metal–organic frameworks. Chem Rev 112:970–1000CrossRef
184.
go back to reference Deria P, Mondloch JE, Karagiaridi O, Bury W, Hupp JT, Farha OK (2014) Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement. Chem Soc Rev 43:5896–5912CrossRef Deria P, Mondloch JE, Karagiaridi O, Bury W, Hupp JT, Farha OK (2014) Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement. Chem Soc Rev 43:5896–5912CrossRef
185.
go back to reference Cohen SM (2010) Modifying MOFs: new chemistry, new materials. Chem Sci 1:32–36CrossRef Cohen SM (2010) Modifying MOFs: new chemistry, new materials. Chem Sci 1:32–36CrossRef
186.
go back to reference Karagiaridi O, Bury W, Mondloch JE, Hupp JT, Farha OK (2014) Solvent-assisted linker exchange: an alternative to the de novo synthesis of unattainable metal–organic frameworks. Angew Chem Int Ed 53:4530–4540CrossRef Karagiaridi O, Bury W, Mondloch JE, Hupp JT, Farha OK (2014) Solvent-assisted linker exchange: an alternative to the de novo synthesis of unattainable metal–organic frameworks. Angew Chem Int Ed 53:4530–4540CrossRef
187.
go back to reference Evans JD, Sumby CJ, Doonan CJ (2014) Post-synthetic metalation of metal–organic frameworks. Chem Soc Rev 43:5933–5951CrossRef Evans JD, Sumby CJ, Doonan CJ (2014) Post-synthetic metalation of metal–organic frameworks. Chem Soc Rev 43:5933–5951CrossRef
188.
go back to reference Brozek CK, Dinca M (2014) Cation exchange at the secondary building units of metal–organic frameworks. Chem Soc Rev 43:5456–5467CrossRef Brozek CK, Dinca M (2014) Cation exchange at the secondary building units of metal–organic frameworks. Chem Soc Rev 43:5456–5467CrossRef
189.
go back to reference Han Y, Li J-R, Xie Y, Guo G (2014) Substitution reactions in metal–organic frameworks and metal–organic polyhedra. Chem Soc Rev 43:5952–5981CrossRef Han Y, Li J-R, Xie Y, Guo G (2014) Substitution reactions in metal–organic frameworks and metal–organic polyhedra. Chem Soc Rev 43:5952–5981CrossRef
190.
go back to reference Juan-Alcaniz J, Gascon J, Kapteijn F (2012) Metal–organic frameworks as scaffolds for the encapsulation of active species: state of the art and future perspectives. J Mater Chem 22:10102–10118CrossRef Juan-Alcaniz J, Gascon J, Kapteijn F (2012) Metal–organic frameworks as scaffolds for the encapsulation of active species: state of the art and future perspectives. J Mater Chem 22:10102–10118CrossRef
191.
go back to reference Esken D, Turner S, Lebedev OI, Van Tendeloo G, Fischer RA (2010) Au@ZIFs: stabilization and encapsulation of cavity-size matching gold clusters inside functionalized zeolite imidazolate frameworks, ZIFs. Chem Mater 22:6393–6401CrossRef Esken D, Turner S, Lebedev OI, Van Tendeloo G, Fischer RA (2010) Au@ZIFs: stabilization and encapsulation of cavity-size matching gold clusters inside functionalized zeolite imidazolate frameworks, ZIFs. Chem Mater 22:6393–6401CrossRef
192.
go back to reference Lu G, Li S, Guo Z, Farha OK, Hauser BG, Qi X, Wang Y, Wang X, Han S, Liu X, DuChene JS, Zhang H, Zhang Q, Chen X, Ma J, Loo SCJ, Wei WD, Yang Y, Hupp JT, Huo F (2012) Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nat Chem 4:310–316CrossRef Lu G, Li S, Guo Z, Farha OK, Hauser BG, Qi X, Wang Y, Wang X, Han S, Liu X, DuChene JS, Zhang H, Zhang Q, Chen X, Ma J, Loo SCJ, Wei WD, Yang Y, Hupp JT, Huo F (2012) Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nat Chem 4:310–316CrossRef
193.
go back to reference Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Férey G, Morris RE, Serre C (2012) Metal-organic frameworks in biomedicine. Chem Rev 112:1232–1268CrossRef Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Férey G, Morris RE, Serre C (2012) Metal-organic frameworks in biomedicine. Chem Rev 112:1232–1268CrossRef
194.
go back to reference Imaz I, Rubio-Martínez M, An J, Solé-Font I, Rosi NL, Maspoch D (2011) Metal–biomolecule frameworks (MBioFs). Chem Commun 47:7287–7302CrossRef Imaz I, Rubio-Martínez M, An J, Solé-Font I, Rosi NL, Maspoch D (2011) Metal–biomolecule frameworks (MBioFs). Chem Commun 47:7287–7302CrossRef
195.
go back to reference Lanchas M, Arcediano S, Beobide G, Castillo O, Luque A, Pérez-Yáñez S (2015) Towards multicomponent MOFs via solvent-free synthesis under conventional oven and microwave assisted heating. Inorg Chem Front 2:425–433CrossRef Lanchas M, Arcediano S, Beobide G, Castillo O, Luque A, Pérez-Yáñez S (2015) Towards multicomponent MOFs via solvent-free synthesis under conventional oven and microwave assisted heating. Inorg Chem Front 2:425–433CrossRef
196.
go back to reference Rieter WJ, Pott KM, Taylor KML, Lin W (2008) Nanoscale coordination polymers for platinum-based anticancer drug delivery. J Am Chem Soc 130:11584–11585CrossRef Rieter WJ, Pott KM, Taylor KML, Lin W (2008) Nanoscale coordination polymers for platinum-based anticancer drug delivery. J Am Chem Soc 130:11584–11585CrossRef
197.
go back to reference Huxford RC, Rocca JD, Lin W (2010) Metal–organic frameworks as potential drug carriers. Curr Opin Chem Biol 14:262–268CrossRef Huxford RC, Rocca JD, Lin W (2010) Metal–organic frameworks as potential drug carriers. Curr Opin Chem Biol 14:262–268CrossRef
198.
go back to reference Ummadi S, Shravani B, Rao NGR, Reddy MS, Nayak BS (2013) Overview on controlled release dosage form. Int J Pharma Sci 3:258–269 Ummadi S, Shravani B, Rao NGR, Reddy MS, Nayak BS (2013) Overview on controlled release dosage form. Int J Pharma Sci 3:258–269
199.
go back to reference Miller SR, Heurtaux D, Baati T, Horcajada P, Grenèche J-M, Serre C (2010) Biodegradable therapeutic MOFs for the delivery of bioactive molecules. Chem Commun 46:3634–3640 Miller SR, Heurtaux D, Baati T, Horcajada P, Grenèche J-M, Serre C (2010) Biodegradable therapeutic MOFs for the delivery of bioactive molecules. Chem Commun 46:3634–3640
200.
go back to reference Tamames-Tabar C, Imbuluzqueta E, Guillou N, Serre C, Miller SR, Elkaïm E, Horcajada P, Blanco-Prieto MJ (2015) A Zn azelate MOF: combining antibacterial effect. Cryst Eng Comm 17:456–462CrossRef Tamames-Tabar C, Imbuluzqueta E, Guillou N, Serre C, Miller SR, Elkaïm E, Horcajada P, Blanco-Prieto MJ (2015) A Zn azelate MOF: combining antibacterial effect. Cryst Eng Comm 17:456–462CrossRef
201.
go back to reference Cooper L, Hidalgo T, Gorman M, Lozano-Fernández T, Simón-Vázquez R, Olivier C, Guillou N, Serre C, Martineau C, Taulelle F, Damasceno-Borges D, Maurin G, González-Fernández A, Horcajada P, Devic T (2015) A biocompatible porous Mg-gallate metal-organic framework as an antioxidant carrier. Chem Commun 51:5848–5851CrossRef Cooper L, Hidalgo T, Gorman M, Lozano-Fernández T, Simón-Vázquez R, Olivier C, Guillou N, Serre C, Martineau C, Taulelle F, Damasceno-Borges D, Maurin G, González-Fernández A, Horcajada P, Devic T (2015) A biocompatible porous Mg-gallate metal-organic framework as an antioxidant carrier. Chem Commun 51:5848–5851CrossRef
202.
go back to reference Miller SR, Heurtaux D, Baati T, Horcajada P, Grenèche J-M, Serre S (2010) Biodegradable therapeutic MOFs for the delivery of bioactive molecules. Chem Commun 46:4526–4528CrossRef Miller SR, Heurtaux D, Baati T, Horcajada P, Grenèche J-M, Serre S (2010) Biodegradable therapeutic MOFs for the delivery of bioactive molecules. Chem Commun 46:4526–4528CrossRef
203.
go back to reference Su H, Sun F, Jia J, He H, Wanga A, Zhu G (2015) A highly porous medical metal-organic framework constructed from bioactive curcumin. Chem Commun 51:5774–5777CrossRef Su H, Sun F, Jia J, He H, Wanga A, Zhu G (2015) A highly porous medical metal-organic framework constructed from bioactive curcumin. Chem Commun 51:5774–5777CrossRef
204.
go back to reference Tan L-L, Song N, Zhang SX-A, Li H, Wang B, Yang Y-W (2016) Ca2+, pH and thermos triple-responsive mechanized Zr-based MOFs for on-command drug release in bone diseases. J Mater Chem B 4:135–140CrossRef Tan L-L, Song N, Zhang SX-A, Li H, Wang B, Yang Y-W (2016) Ca2+, pH and thermos triple-responsive mechanized Zr-based MOFs for on-command drug release in bone diseases. J Mater Chem B 4:135–140CrossRef
205.
go back to reference Ma D-Y, Li Z, Xiao J-X, Deng R, Lin P-F, Chen R-Q, Liang Y-Q, Guo H-F, Liu B, Liu J-Q (2015) Hydrostable and Nitryl/methyl-functionalized metal–organic framework for drug delivery and highly selective CO2 adsorption. Inorg Chem 54:6719–6726CrossRef Ma D-Y, Li Z, Xiao J-X, Deng R, Lin P-F, Chen R-Q, Liang Y-Q, Guo H-F, Liu B, Liu J-Q (2015) Hydrostable and Nitryl/methyl-functionalized metal–organic framework for drug delivery and highly selective CO2 adsorption. Inorg Chem 54:6719–6726CrossRef
206.
go back to reference Liu J-Q, Li X-F, Gu C-Y, Silva JCS, Barros AL, Alves-Jr S, Li B-H, Ren F, Batten SR, Soares TA (2015) A combined experimental and computational study of novel nanocage-based metal–organic frameworks for drug delivery. Dalton Trans 44:19370–19382CrossRef Liu J-Q, Li X-F, Gu C-Y, Silva JCS, Barros AL, Alves-Jr S, Li B-H, Ren F, Batten SR, Soares TA (2015) A combined experimental and computational study of novel nanocage-based metal–organic frameworks for drug delivery. Dalton Trans 44:19370–19382CrossRef
207.
go back to reference Li Q-L, Wang J-P, Liu W-C, Zhuang X-Y, Liu J-Q, Fan G-L, Li B-H, Lin W-N, Man J-H (2015) A new (4,8)-connected topological MOF as potential drug delivery. Inorg Chem Commun 55:8–10CrossRef Li Q-L, Wang J-P, Liu W-C, Zhuang X-Y, Liu J-Q, Fan G-L, Li B-H, Lin W-N, Man J-H (2015) A new (4,8)-connected topological MOF as potential drug delivery. Inorg Chem Commun 55:8–10CrossRef
208.
go back to reference Bag PP, Wang D, Chen Z, Cao R (2016) Outstanding drug loading capacity by water stable microporous MOF: a potential drug carrier. Chem Commun 52:3669–3672CrossRef Bag PP, Wang D, Chen Z, Cao R (2016) Outstanding drug loading capacity by water stable microporous MOF: a potential drug carrier. Chem Commun 52:3669–3672CrossRef
209.
go back to reference Liu K, Gao Y, Liu J, Wen Y, Zhao Y, Zhang K, Yu G (2016) Photoreactivity of metal − organic frameworks in aqueous solutions: metal dependence of reactive oxygen species production. Environ Sci Technol 50:3634–3640CrossRef Liu K, Gao Y, Liu J, Wen Y, Zhao Y, Zhang K, Yu G (2016) Photoreactivity of metal − organic frameworks in aqueous solutions: metal dependence of reactive oxygen species production. Environ Sci Technol 50:3634–3640CrossRef
210.
go back to reference Hu Q, Yu J, Liu M, Liu A, Dou Z, Yang Y (2014) A low cytotoxic cationic metal − organic framework carrier for controllable drug release. J Med Chem 57:5679–5685CrossRef Hu Q, Yu J, Liu M, Liu A, Dou Z, Yang Y (2014) A low cytotoxic cationic metal − organic framework carrier for controllable drug release. J Med Chem 57:5679–5685CrossRef
211.
go back to reference Motakef-Kazemi N, Shojaosadati SA, Morsali A (2014) In situ synthesis of a drug-loaded MOF at room temperature. Microporous Mesoporous Mater 186:73–79CrossRef Motakef-Kazemi N, Shojaosadati SA, Morsali A (2014) In situ synthesis of a drug-loaded MOF at room temperature. Microporous Mesoporous Mater 186:73–79CrossRef
212.
go back to reference Horcajada P, Serre C, Maurin G, Ramsahye NA, Balas F, Vallet-Regí M, Sebban M, Taulelle F, Férey G (2008) Flexible porous metal-organic frameworks for a controlled drug delivery. J Am Chem Soc 130:6774–6780CrossRef Horcajada P, Serre C, Maurin G, Ramsahye NA, Balas F, Vallet-Regí M, Sebban M, Taulelle F, Férey G (2008) Flexible porous metal-organic frameworks for a controlled drug delivery. J Am Chem Soc 130:6774–6780CrossRef
213.
go back to reference An J, Geib SJ, Rosi NL (2009) Cation-triggered drug release from a porous zinc-Adeninate metal-organic framework. J Am Chem Soc 131:8376–8377CrossRef An J, Geib SJ, Rosi NL (2009) Cation-triggered drug release from a porous zinc-Adeninate metal-organic framework. J Am Chem Soc 131:8376–8377CrossRef
214.
go back to reference Allendorf MD, Bauer CA, Bhakta RK, Houk RJT (2009) Luminescent metal–organic frameworks. Chem Soc Rev 38:1330–1352CrossRef Allendorf MD, Bauer CA, Bhakta RK, Houk RJT (2009) Luminescent metal–organic frameworks. Chem Soc Rev 38:1330–1352CrossRef
215.
go back to reference Perry JJ IV, Feng PL, Meek ST, Leong K, Doty FP, Allendorf MD (2012) Connecting structure with function in metal–organic frameworks to design. J Mater Chem 22:10235–10248CrossRef Perry JJ IV, Feng PL, Meek ST, Leong K, Doty FP, Allendorf MD (2012) Connecting structure with function in metal–organic frameworks to design. J Mater Chem 22:10235–10248CrossRef
216.
go back to reference Čejka J (2001) Metal-organic frameworks: applications from catalysis to gas storage. Farrusseng D (ed) Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Čejka J (2001) Metal-organic frameworks: applications from catalysis to gas storage. Farrusseng D (ed) Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
217.
go back to reference Zhang X, Wang W, Hu Z, Wang G, Uvdal K (2015) Coordination polymers for energy transfer: preparations, properties, sensing applications, and perspectives. Coord Chem Rev 284:206–235CrossRef Zhang X, Wang W, Hu Z, Wang G, Uvdal K (2015) Coordination polymers for energy transfer: preparations, properties, sensing applications, and perspectives. Coord Chem Rev 284:206–235CrossRef
218.
go back to reference Alpha B, Ballardini R, Balzani V, Lehn J-M, Perathoner S, Sabbatini N (1990) Antenna effect in luminescent lanthanide cryptates: a photophysical study. Photochem Photobiol 52: 299–306CrossRef Alpha B, Ballardini R, Balzani V, Lehn J-M, Perathoner S, Sabbatini N (1990) Antenna effect in luminescent lanthanide cryptates: a photophysical study. Photochem Photobiol 52: 299–306CrossRef
219.
go back to reference Dang S, Zhang J-H, Sun Z-M (2012) Tunable emission based on lanthanide(III) metal–organic frameworks: an alternative approach to white light. J Mater Chem 22:8868CrossRef Dang S, Zhang J-H, Sun Z-M (2012) Tunable emission based on lanthanide(III) metal–organic frameworks: an alternative approach to white light. J Mater Chem 22:8868CrossRef
220.
go back to reference T.de. Lill D, Tareila AM, Cahill CL (2009) Synthesis, structure, and luminescence of a two-dimensional lanthanide(III)-suberate coordination polymer resulting from dimeric secondary building units. Inorg Chem Commun 12:191–194CrossRef T.de. Lill D, Tareila AM, Cahill CL (2009) Synthesis, structure, and luminescence of a two-dimensional lanthanide(III)-suberate coordination polymer resulting from dimeric secondary building units. Inorg Chem Commun 12:191–194CrossRef
221.
go back to reference Zhu W-H, Wang Z-M, Gao S (2007) Two 3D porous Lanthanide − Fumarate − Oxalate frameworks exhibiting framework dynamics and luminescent change upon reversible de- and rehydration. Inorg Chem 46:1337–1342CrossRef Zhu W-H, Wang Z-M, Gao S (2007) Two 3D porous Lanthanide − Fumarate − Oxalate frameworks exhibiting framework dynamics and luminescent change upon reversible de- and rehydration. Inorg Chem 46:1337–1342CrossRef
222.
go back to reference Zhang L-Z, Gu W, Li B, Liu X, Liao D-Z (2007) {[Nd4(ox)4(NO3)2(OH)2(H2O)2]·5H2O}n: a porous 3D lanthanide-based coordination polymer with a special luminescent property. Inorg Chem 46:622–624CrossRef Zhang L-Z, Gu W, Li B, Liu X, Liao D-Z (2007) {[Nd4(ox)4(NO3)2(OH)2(H2O)2]·5H2O}n: a porous 3D lanthanide-based coordination polymer with a special luminescent property. Inorg Chem 46:622–624CrossRef
223.
go back to reference Dang S, Zhang JH, Sun ZMH (2012) Luminescent lanthanide metal–organic frameworks with a large SHG response. Chem Commun 48:11139–11141CrossRef Dang S, Zhang JH, Sun ZMH (2012) Luminescent lanthanide metal–organic frameworks with a large SHG response. Chem Commun 48:11139–11141CrossRef
224.
go back to reference White KA, Chengelis DA, Zeller M, Geib SJ, Szakos J, Petoud S, Rosi NL (2009) Near-infrared emitting ytterbium metal–organic frameworks with tunable excitation properties. Chem Commun 45:4506CrossRef White KA, Chengelis DA, Zeller M, Geib SJ, Szakos J, Petoud S, Rosi NL (2009) Near-infrared emitting ytterbium metal–organic frameworks with tunable excitation properties. Chem Commun 45:4506CrossRef
225.
go back to reference Hasegawa Y, Nakanishi T (2015) Luminescent lanthanide coordination polymers for photonic applications. RSC Adv 5:338CrossRef Hasegawa Y, Nakanishi T (2015) Luminescent lanthanide coordination polymers for photonic applications. RSC Adv 5:338CrossRef
226.
go back to reference Roy S, Chakraborty A, Maji TK (2014) Lanthanide–organic frameworks for gas storage and as magneto-luminescent materials. Coord Chem Rev 273−274:139–164CrossRef Roy S, Chakraborty A, Maji TK (2014) Lanthanide–organic frameworks for gas storage and as magneto-luminescent materials. Coord Chem Rev 273−274:139–164CrossRef
227.
go back to reference Cui Y, Chen B, Qian G (2014) Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. Coord Chem Rev 273-274:76–86CrossRef Cui Y, Chen B, Qian G (2014) Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. Coord Chem Rev 273-274:76–86CrossRef
228.
go back to reference Cui Y, Chen B, Qian G (2013) Lanthanide metal-organic frameworks for luminescent sensing and light emitting applications. Coord Chem Rev 273–274:76–86 Cui Y, Chen B, Qian G (2013) Lanthanide metal-organic frameworks for luminescent sensing and light emitting applications. Coord Chem Rev 273–274:76–86
229.
go back to reference Zhao D, Cui Y, Yang Y, Qian G (2016) Sensing-functional luminescent metal–organic frameworks. CrystEngComm 18:3746CrossRef Zhao D, Cui Y, Yang Y, Qian G (2016) Sensing-functional luminescent metal–organic frameworks. CrystEngComm 18:3746CrossRef
230.
go back to reference Banerjee D, Hu Z, Li J (2014) Luminescent metal–organic frameworks as explosive sensors. Dalton Trans 43:10668CrossRef Banerjee D, Hu Z, Li J (2014) Luminescent metal–organic frameworks as explosive sensors. Dalton Trans 43:10668CrossRef
231.
go back to reference Hu Z, Deibert BJ, Li J (2014) Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem Soc Rev 43:5815–5840CrossRef Hu Z, Deibert BJ, Li J (2014) Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem Soc Rev 43:5815–5840CrossRef
232.
go back to reference Miller SE, Teplensky MH, Moghadam PZ, Fairen-Jimenez D (2016) Metal-organic frameworks as biosensors for luminescence-based detection and imaging. Interface Focus 6:20160027CrossRef Miller SE, Teplensky MH, Moghadam PZ, Fairen-Jimenez D (2016) Metal-organic frameworks as biosensors for luminescence-based detection and imaging. Interface Focus 6:20160027CrossRef
233.
go back to reference Liu D, Lu K, Poon C, Lin W (2014) Metal − organic frameworks as sensory materials and imaging agents. Inorg Chem 53:1916–1924CrossRef Liu D, Lu K, Poon C, Lin W (2014) Metal − organic frameworks as sensory materials and imaging agents. Inorg Chem 53:1916–1924CrossRef
234.
go back to reference Xu H, Liu F, Cui Y, Chen B, Qian G (2011) A luminescent nanoscale metal–organic framework for sensing of nitroaromatic explosives. Chem Commun 47:3153–3155CrossRef Xu H, Liu F, Cui Y, Chen B, Qian G (2011) A luminescent nanoscale metal–organic framework for sensing of nitroaromatic explosives. Chem Commun 47:3153–3155CrossRef
235.
go back to reference Guan W, Zhou W, Lu J, Lu C (2015) Luminescent films for chemo- and biosensing. Chem Soc Rev 44:6981–7009CrossRef Guan W, Zhou W, Lu J, Lu C (2015) Luminescent films for chemo- and biosensing. Chem Soc Rev 44:6981–7009CrossRef
236.
go back to reference Shen X, Lu Y, Yan B (2015) Lanthanide complex hybrid system for fluorescent sensing as thermometer. Eur J Inorg Chem 2015:916–919CrossRef Shen X, Lu Y, Yan B (2015) Lanthanide complex hybrid system for fluorescent sensing as thermometer. Eur J Inorg Chem 2015:916–919CrossRef
237.
go back to reference Lu Y, Yan B (2014) A ratiometric fluorescent pH sensor based on nanoscale metal–organic frameworks (MOFs) modified by europium(III) complexes. Chem Commun 50:13323CrossRef Lu Y, Yan B (2014) A ratiometric fluorescent pH sensor based on nanoscale metal–organic frameworks (MOFs) modified by europium(III) complexes. Chem Commun 50:13323CrossRef
238.
go back to reference Amoroso AJ, Pope SJA (2015) Using lanthanide ions in molecular bioimaging. Chem Soc Rev 44:4723–4742CrossRef Amoroso AJ, Pope SJA (2015) Using lanthanide ions in molecular bioimaging. Chem Soc Rev 44:4723–4742CrossRef
239.
go back to reference Foucault-Collet A, Gogick KA, White KA, Villette S, Pallier A, Collet G, Kieda C, Li T, Geib SJ, Rosi NL, Petoud S (2013) Lanthanide near infrared imaging in living cells with Yb3+ nano metal organic frameworks. Proc Natl Acad Sci U S A 110:17199–17204CrossRef Foucault-Collet A, Gogick KA, White KA, Villette S, Pallier A, Collet G, Kieda C, Li T, Geib SJ, Rosi NL, Petoud S (2013) Lanthanide near infrared imaging in living cells with Yb3+ nano metal organic frameworks. Proc Natl Acad Sci U S A 110:17199–17204CrossRef
240.
go back to reference Cho W, Lee HJ, Choi S, Kim Y, Oh M (2014) Highly effective heterogeneous chemosensors of luminescent silica@coordination polymer core-shell micro-structures for metal ion sensing. Sci Rep 4:6518CrossRef Cho W, Lee HJ, Choi S, Kim Y, Oh M (2014) Highly effective heterogeneous chemosensors of luminescent silica@coordination polymer core-shell micro-structures for metal ion sensing. Sci Rep 4:6518CrossRef
241.
go back to reference Brown TE, LeMay HE, Bursten BE, Murphy C, Woodward P, Stoltzfus ME (2015) Chemistry: the central science, 13th edn. Pearson, Upper Saddle River, 1248p Brown TE, LeMay HE, Bursten BE, Murphy C, Woodward P, Stoltzfus ME (2015) Chemistry: the central science, 13th edn. Pearson, Upper Saddle River, 1248p
242.
go back to reference Crane JL, Anderson KE, Conway SG (2015) Hydrothermal synthesis and characterization of a metal–organic framework by Thermogravimetric analysis, powder X-ray diffraction, and infrared spectroscopy: an integrative inorganic chemistry experiment. J Chem Educ 92: 373–377CrossRef Crane JL, Anderson KE, Conway SG (2015) Hydrothermal synthesis and characterization of a metal–organic framework by Thermogravimetric analysis, powder X-ray diffraction, and infrared spectroscopy: an integrative inorganic chemistry experiment. J Chem Educ 92: 373–377CrossRef
243.
go back to reference Zhang Z, Nguyen HTH, Miller SA, Cohen SM (2015) polyMOFs: a class of Interconvertible polymer-metal-organic-framework hybrid materials. Angew Chem Int Ed 54:6152–6157CrossRef Zhang Z, Nguyen HTH, Miller SA, Cohen SM (2015) polyMOFs: a class of Interconvertible polymer-metal-organic-framework hybrid materials. Angew Chem Int Ed 54:6152–6157CrossRef
244.
go back to reference Paz FAA, Klinowski J, Vilela SMF, Tomé JPC, Cavaleiro JAS, Rocha J (2012) Ligand design for functional metal–organic frameworks. Chem Soc Rev 41:1088–1110CrossRef Paz FAA, Klinowski J, Vilela SMF, Tomé JPC, Cavaleiro JAS, Rocha J (2012) Ligand design for functional metal–organic frameworks. Chem Soc Rev 41:1088–1110CrossRef
245.
go back to reference Eddaoudi M, Sava DF, Eubank JF, Adil K, Guillerm V (2015) Zeolite-like metal–organic frameworks (ZMOFs): design, synthesis, and properties. Chem Soc Rev 44:228–249CrossRef Eddaoudi M, Sava DF, Eubank JF, Adil K, Guillerm V (2015) Zeolite-like metal–organic frameworks (ZMOFs): design, synthesis, and properties. Chem Soc Rev 44:228–249CrossRef
246.
go back to reference Mah RK, Gelfand BS, Taylor JM, Shimizu GKH (2015) Reconciling order, stability, and porosity in phosphonate metal–organic frameworks via HF-mediated synthesis. Inorg Chem Front 2:273–277CrossRef Mah RK, Gelfand BS, Taylor JM, Shimizu GKH (2015) Reconciling order, stability, and porosity in phosphonate metal–organic frameworks via HF-mediated synthesis. Inorg Chem Front 2:273–277CrossRef
247.
go back to reference Zhang J-P, Zhang Y-B, Lin J-B, Chen X-M (2012) Metal Azolate frameworks: from crystal engineering to functional materials. Chem Rev 112:1001–1033CrossRef Zhang J-P, Zhang Y-B, Lin J-B, Chen X-M (2012) Metal Azolate frameworks: from crystal engineering to functional materials. Chem Rev 112:1001–1033CrossRef
248.
go back to reference Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A 103:10186–10191CrossRef Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A 103:10186–10191CrossRef
249.
go back to reference Furukawa S, Reboul J, Diring S, Sumida K, Kitagawa S (2014) Structuring of metal–organic frameworks at the mesoscopic/macroscopic scale. Chem Soc Rev 43:5700–5734CrossRef Furukawa S, Reboul J, Diring S, Sumida K, Kitagawa S (2014) Structuring of metal–organic frameworks at the mesoscopic/macroscopic scale. Chem Soc Rev 43:5700–5734CrossRef
250.
go back to reference Bureekaew S, Shimomura S, Kitagawa S (2008) Chemistry and application of flexible porous coordination polymers. Sci Technol Adv Mater 9:014108CrossRef Bureekaew S, Shimomura S, Kitagawa S (2008) Chemistry and application of flexible porous coordination polymers. Sci Technol Adv Mater 9:014108CrossRef
251.
go back to reference Schneemann A, Bon V, Schwedler I, Senkovska I, Kaskel S, Fischer RA (2014) Flexible metal–organic frameworks. Chem Soc Rev 43:6062–6096CrossRef Schneemann A, Bon V, Schwedler I, Senkovska I, Kaskel S, Fischer RA (2014) Flexible metal–organic frameworks. Chem Soc Rev 43:6062–6096CrossRef
252.
go back to reference Mendes RF, Paz FAA (2015) Transforming metal–organic frameworks into functional materials. Inorg Chem Front 2:495–509CrossRef Mendes RF, Paz FAA (2015) Transforming metal–organic frameworks into functional materials. Inorg Chem Front 2:495–509CrossRef
253.
go back to reference Kolea GK, Vittal JJ (2013) Solid-state reactivity and structural transformations involving coordination polymers. Chem Soc Rev 42:1755–1775CrossRef Kolea GK, Vittal JJ (2013) Solid-state reactivity and structural transformations involving coordination polymers. Chem Soc Rev 42:1755–1775CrossRef
254.
go back to reference First EL, Floudas CA (2013) MOFomics: computational pore characterization of metal–organic frameworks. Microporous Mesoporous Mate 165:32–39CrossRef First EL, Floudas CA (2013) MOFomics: computational pore characterization of metal–organic frameworks. Microporous Mesoporous Mate 165:32–39CrossRef
255.
go back to reference Wilmer CE, Leaf M, Lee CY, Farha OK, Hauser BG, Hupp JT, Snurr RQ (2011) Large-scale screening of hypothetical metal–organic frameworks. Nature Chemistry Wilmer CE, Leaf M, Lee CY, Farha OK, Hauser BG, Hupp JT, Snurr RQ (2011) Large-scale screening of hypothetical metal–organic frameworks. Nature Chemistry
256.
go back to reference Chen S, Lucier BEG, Boyle PD, Huang Y (2016) Understanding the fascinating origins of CO2 adsorption and dynamics in MOFs. Chem Mater 28:5829–5846CrossRef Chen S, Lucier BEG, Boyle PD, Huang Y (2016) Understanding the fascinating origins of CO2 adsorption and dynamics in MOFs. Chem Mater 28:5829–5846CrossRef
257.
go back to reference Zhang J, Shreeve JM (2016) 3D nitrogen-rich metal–organic frameworks: opportunities for safer energetics. Dalton Trans 45:2363–2368CrossRef Zhang J, Shreeve JM (2016) 3D nitrogen-rich metal–organic frameworks: opportunities for safer energetics. Dalton Trans 45:2363–2368CrossRef
258.
go back to reference Zhao P, Lampronti GI, Lloyd GO, Suard E, Redfern SAT (2014) Direct visualisation of carbon dioxide adsorption in gate-opening zeolitic imidazolate framework ZIF-7. J Mater Chem A 2:620–623CrossRef Zhao P, Lampronti GI, Lloyd GO, Suard E, Redfern SAT (2014) Direct visualisation of carbon dioxide adsorption in gate-opening zeolitic imidazolate framework ZIF-7. J Mater Chem A 2:620–623CrossRef
259.
go back to reference Beyzavi MH, Stephenson CJ, Liu Y, Karagiaridi O, Hupp JT, Farha OK (2015) Metal–organic framework-based catalysts: chemical fixation of CO2 with epoxides leading to cyclic organic carbonates. Front Energy Res 2:1–10CrossRef Beyzavi MH, Stephenson CJ, Liu Y, Karagiaridi O, Hupp JT, Farha OK (2015) Metal–organic framework-based catalysts: chemical fixation of CO2 with epoxides leading to cyclic organic carbonates. Front Energy Res 2:1–10CrossRef
261.
go back to reference BASF (2014) Metal Organic Frameworks (MOFs): innovative fuel systems for Natural Gas Vehicles (NGVs). Chem Soc Rev. 43:6173–6174 BASF (2014) Metal Organic Frameworks (MOFs): innovative fuel systems for Natural Gas Vehicles (NGVs). Chem Soc Rev. 43:6173–6174
262.
go back to reference Mason JA, Oktawiec J, Taylor MK, Hudson MR, Rodriguez J, Bachman JE, Gonzalez MI, Cervellino A, Guagliardi A, Brown CM, Llewellyn PL, Masciocchi N, Long JR (2015) Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527:357–361CrossRef Mason JA, Oktawiec J, Taylor MK, Hudson MR, Rodriguez J, Bachman JE, Gonzalez MI, Cervellino A, Guagliardi A, Brown CM, Llewellyn PL, Masciocchi N, Long JR (2015) Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527:357–361CrossRef
264.
265.
go back to reference Vukotic VN, Harris KJ, Zhu K, Schurko RW, Loeb SJ (2012) Metal–organic frameworks with dynamic interlocked components. Nat Chem 4:456–460CrossRef Vukotic VN, Harris KJ, Zhu K, Schurko RW, Loeb SJ (2012) Metal–organic frameworks with dynamic interlocked components. Nat Chem 4:456–460CrossRef
266.
go back to reference Deng H, Olson MA, Stoddart JF, Yaghi OM (2010) Robust dynamics. Nat Chem 2:439–443CrossRef Deng H, Olson MA, Stoddart JF, Yaghi OM (2010) Robust dynamics. Nat Chem 2:439–443CrossRef
267.
go back to reference Li Q, Sue C-H, Basu S, Shveyd AK, Zhang W, Barin G, Fang L, Sarjeant AA, Stoddart JF, Yaghi OM (2010) A Catenated strut in a Catenated metal–organic framework. Angew Chem Int Ed 49:6751–6755CrossRef Li Q, Sue C-H, Basu S, Shveyd AK, Zhang W, Barin G, Fang L, Sarjeant AA, Stoddart JF, Yaghi OM (2010) A Catenated strut in a Catenated metal–organic framework. Angew Chem Int Ed 49:6751–6755CrossRef
268.
go back to reference Lee S, Kapustin EA, Yaghi OM (2016) Coordinative alignment of molecules in chiral metal-organic frameworks. Science 353:808–811CrossRef Lee S, Kapustin EA, Yaghi OM (2016) Coordinative alignment of molecules in chiral metal-organic frameworks. Science 353:808–811CrossRef
269.
go back to reference Inokuma Y, Yoshioka S, Ariyoshi J, Arai T, Fujita M (2014) Preparation and guest-uptake protocol for a porous complex useful for ‘crystal-free’ crystallography. Nat Protoc 9: 246–252CrossRef Inokuma Y, Yoshioka S, Ariyoshi J, Arai T, Fujita M (2014) Preparation and guest-uptake protocol for a porous complex useful for ‘crystal-free’ crystallography. Nat Protoc 9: 246–252CrossRef
270.
go back to reference Bennett TD, Tan J-C, Yue Y, Baxter E, Ducati C, Terrill NJ, Yeung HH-M, Zhou Z, Chen W, Henke S, Cheetham AK, Greaves GN (2015) Hybrid glasses from strong and fragile metal-organic framework liquids. Nature Commun 6:8079. doi:10.1038/ncomms9079 Bennett TD, Tan J-C, Yue Y, Baxter E, Ducati C, Terrill NJ, Yeung HH-M, Zhou Z, Chen W, Henke S, Cheetham AK, Greaves GN (2015) Hybrid glasses from strong and fragile metal-organic framework liquids. Nature Commun 6:8079. doi:10.​1038/​ncomms9079
271.
go back to reference Pachfule P, Shinde D, Majumder M, Xu Q (2016) Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nat Chem 8(7):718–724CrossRef Pachfule P, Shinde D, Majumder M, Xu Q (2016) Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nat Chem 8(7):718–724CrossRef
272.
go back to reference Zhang S, Liu H, Sun C, Liu P, Li L, Yang Z, Feng X, Huo F, Lu X (2015) CuO/Cu2O porous composites: shape and composition controllable fabrication inherited from metal organic frameworks and further application in CO oxidation. J Mater Chem A 3:5294–5298CrossRef Zhang S, Liu H, Sun C, Liu P, Li L, Yang Z, Feng X, Huo F, Lu X (2015) CuO/Cu2O porous composites: shape and composition controllable fabrication inherited from metal organic frameworks and further application in CO oxidation. J Mater Chem A 3:5294–5298CrossRef
273.
go back to reference Jiang J, Zhao Y, Yaghi OM (2016) Covalent chemistry beyond molecules. J Am Chem Soc 138:3255–3265CrossRef Jiang J, Zhao Y, Yaghi OM (2016) Covalent chemistry beyond molecules. J Am Chem Soc 138:3255–3265CrossRef
Metadata
Title
The Amazing Chemistry of Metal-Organic Frameworks
Authors
Regina C. G. Frem
Guilherme Arroyos
Guilherme N. Lucena
Jader B. da Silva Flor
Marcelo A. Fávaro
Mariana F. Coura
Renata C. Alves
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-53898-3_14

Premium Partners