Skip to main content
Top
Published in: Designs, Codes and Cryptography 4/2023

22-11-2022

The cycle structure of a class of permutation polynomials

Authors: Dan Zeng, Xiangyong Zeng, Lisha Li, Yunge Xu

Published in: Designs, Codes and Cryptography | Issue 4/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we study the cycle structure of a permutation polynomial of the form \(f(x)=x^{(q+1)s_1}(x+x^{q})^{s_2}+x^{s_3}\) over \({\mathbb {F}}_{q^2}\), where \((s_1,s_2,s_3)\in \{(q^2-2,3,q), (1,q^2-2,1), (1,q^2-1,2), (1,2,4)\}\) and q is even. By calculating the sum of all elements in each cycle of a fraction polynomial \(\frac{x}{x^3+x^2+1}\) or a linearized polynomial \(x^{2^e}+x^2+x\) with \(e\ge 0\), the cycle structure of f(x) over \({\mathbb {F}}_{q^2}\) in the first three cases, that is, \((s_1,s_2,s_3)=\{(q^2-2,3,q), (1,q^2-2,1)\) or \((1,q^2-1,2)\}\), is characterized. For the case \((s_1,s_2,s_3)=(1,2,4)\), we give the cycle structure of f(x) over \({\mathbb {F}}_{q^2}\) for \(q={2^{{2}^{k}}}\) with a positive integer k. For \(q=2^{{2}^{k}_p}\) with an odd prime p, it needs more techniques to determine the cycle structure of f(x). We only give its cycle length.
Literature
3.
go back to reference Berlekamp E.R., Rumsey H., Solomon G.: On the solution of algebraic equations over finite fields. Inf. Control 10(6), 553–564 (1967).MathSciNetCrossRefMATH Berlekamp E.R., Rumsey H., Solomon G.: On the solution of algebraic equations over finite fields. Inf. Control 10(6), 553–564 (1967).MathSciNetCrossRefMATH
4.
go back to reference Capaverde J., Masuda A.M., Rodrigues V.M.: Rédei permutations with cycles of the same length. Des. Codes Cryptogr. 88, 2561–2579 (2020).MathSciNetCrossRefMATH Capaverde J., Masuda A.M., Rodrigues V.M.: Rédei permutations with cycles of the same length. Des. Codes Cryptogr. 88, 2561–2579 (2020).MathSciNetCrossRefMATH
7.
go back to reference Çeşmelioğlu A., Meidl W., Topuzoğlu A.: On the cycle structure of permutation polynomials. Finite Fields Appl. 14(3), 593–614 (2008).MathSciNetCrossRefMATH Çeşmelioğlu A., Meidl W., Topuzoğlu A.: On the cycle structure of permutation polynomials. Finite Fields Appl. 14(3), 593–614 (2008).MathSciNetCrossRefMATH
9.
10.
go back to reference Gerike D.: Determining the cycle structure of permutation polynomials of shape \(X^t+\gamma {\rm Tr}(X^k)\), Ph.D. Dissertation, Otto-von-Guericke University of Magdeburg (2020). Gerike D.: Determining the cycle structure of permutation polynomials of shape \(X^t+\gamma {\rm Tr}(X^k)\), Ph.D. Dissertation, Otto-von-Guericke University of Magdeburg (2020).
11.
go back to reference Gerike D., Kyureghyan G.M.: Permutations on finite fields with invariant cycle structure on lines. Des. Codes Cryptogr. 88, 1723–1740 (2020).MathSciNetCrossRefMATH Gerike D., Kyureghyan G.M.: Permutations on finite fields with invariant cycle structure on lines. Des. Codes Cryptogr. 88, 1723–1740 (2020).MathSciNetCrossRefMATH
12.
go back to reference Golomb S.W.: Shift Register Sequences. Holden-Day Inc, Laguna Hills (1967).MATH Golomb S.W.: Shift Register Sequences. Holden-Day Inc, Laguna Hills (1967).MATH
13.
go back to reference Golomb S.W., Gong G.: Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar. Cambridge University Press, New York (2005).CrossRefMATH Golomb S.W., Gong G.: Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar. Cambridge University Press, New York (2005).CrossRefMATH
14.
go back to reference Lachaud G., Wolfmann J.: The weights of the orthogonals of the extended quadratic binary Goppa codes. IEEE Trans. Inf. Theory 36, 686–692 (1990).MathSciNetCrossRefMATH Lachaud G., Wolfmann J.: The weights of the orthogonals of the extended quadratic binary Goppa codes. IEEE Trans. Inf. Theory 36, 686–692 (1990).MathSciNetCrossRefMATH
16.
go back to reference Lidl R., Mullen G.L.: Cycle structure of Dickson permutation polynomials. Math. J. Okayama Univ. 33(33), 164–170 (1991).MathSciNetMATH Lidl R., Mullen G.L.: Cycle structure of Dickson permutation polynomials. Math. J. Okayama Univ. 33(33), 164–170 (1991).MathSciNetMATH
17.
18.
21.
22.
go back to reference Rubio I.M., Corrada C.J.: Cyclic decomposition of permutations of finite fields obtained using monomials, Finite Fields and Applications, LNCS 2948 254-261, Springer-Verlag (2004). Rubio I.M., Corrada C.J.: Cyclic decomposition of permutations of finite fields obtained using monomials, Finite Fields and Applications, LNCS 2948 254-261, Springer-Verlag (2004).
23.
go back to reference Rubio I.M., Mullen G.L., Corrada C., Castro F.N.: Dickson permutation polynomials that decompose in cycles of the same length. Contemp. Math. 461, 229–240 (2008).MathSciNetCrossRefMATH Rubio I.M., Mullen G.L., Corrada C., Castro F.N.: Dickson permutation polynomials that decompose in cycles of the same length. Contemp. Math. 461, 229–240 (2008).MathSciNetCrossRefMATH
24.
go back to reference Sakzad A., Sadeghi M.R., Panario D.: Cycle structure of permutation functions over finite fields and their applications. Adv. Math. Commun. 6(3), 347–361 (2012).MathSciNetCrossRefMATH Sakzad A., Sadeghi M.R., Panario D.: Cycle structure of permutation functions over finite fields and their applications. Adv. Math. Commun. 6(3), 347–361 (2012).MathSciNetCrossRefMATH
Metadata
Title
The cycle structure of a class of permutation polynomials
Authors
Dan Zeng
Xiangyong Zeng
Lisha Li
Yunge Xu
Publication date
22-11-2022
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 4/2023
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-022-01155-8

Other articles of this Issue 4/2023

Designs, Codes and Cryptography 4/2023 Go to the issue

Premium Partner