Skip to main content
Top
Published in: Physics of Metals and Metallography 3/2021

01-03-2021 | ELECTRICAL AND MAGNETIC PROPERTIES

The Effect of the Spin-Polarized Current on the Dynamics and Structural Changes of Magnetic Vortices in a Large-Diameter Three-Layer Conducting Nanocylinder

Authors: E. G. Ekomasov, S. V. Stepanov, K. A. Zvezdin, N. G. Pugach, G. I. Antonov

Published in: Physics of Metals and Metallography | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The structure and magnetization dynamics are investigated in a vortex spin-transfer nanooscillator, which is a three-layer spin-valve magnetic nanocolumn with a large diameter of 400 nm, under flowing spin-polarized current through it. The dynamic variation in the structure of vortices and their trajectory of motion are studied, using micromagnetic modeling, as a function of the value of the spin-polarized current. It is demonstrated that different modes of motion of vortices may exist: decaying oscillations of vortices, stationary oscillations of vortices, and the mode of switching polarity of one of vortices. The time for which different dynamic modes are settled is determined. The dependence of the oscillation frequency on the value of spin-polarized current is determined for the case of stationary dynamics of coupled vortices. It is shown that, at large values of current, switching of vortex polarity is only possible in a thick layer with the dynamic switching mechanism accompanied by generation of a vortex–antivortex pair. The software package for micromagnetic simulation, SpinPM, is used for numerical calculations of the dynamics of magnetic vortices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference N. Locatelli, R. Lebrun, V. V. Naletov, A. Hamadeh, G. De Loubens, O. Klein, J. Grollier, and V. Cros, “Improved spectral stability in spin-transfer nano oscillators: single vortex versus coupled vortices dynamics,” IEEE Trans. Magn. 51, No. 8, 4300206 (2015).CrossRef N. Locatelli, R. Lebrun, V. V. Naletov, A. Hamadeh, G. De Loubens, O. Klein, J. Grollier, and V. Cros, “Improved spectral stability in spin-transfer nano oscillators: single vortex versus coupled vortices dynamics,” IEEE Trans. Magn. 51, No. 8, 4300206 (2015).CrossRef
4.
go back to reference S. Laichuan, X. Jing, Z. Guoping, Z. Xichao, E. Motohiko, O. Tretiakov, L. Xiaoxi, and Z. Yan, “Spin torque nano-oscillators based on antiferromagnetic skyrmions,” Appl. Phys. Lett. 114, 042402 (2019). S. Laichuan, X. Jing, Z. Guoping, Z. Xichao, E. Motohiko, O. Tretiakov, L. Xiaoxi, and Z. Yan, “Spin torque nano-oscillators based on antiferromagnetic skyrmions,” Appl. Phys. Lett. 114, 042402 (2019).
5.
go back to reference A. Litvinenko, V. Iurchuk, P. Sethi, S. Louis, V. Tyberkevych, J. Li, A. Jenkins, R. Ferreira, B. Dieny, A. Slavin, and U. Ebels, “Supporting Information for the manuscript entitled “Ultra-fast sweep-tuned spectrum analyzer with temporal resolution based on a spin-torque nano-oscillator”, Nano Lett (2020). https://doi.org/10.1021/acs.nanolett.0c02195 A. Litvinenko, V. Iurchuk, P. Sethi, S. Louis, V. Tyberkevych, J. Li, A. Jenkins, R. Ferreira, B. Dieny, A. Slavin, and U. Ebels, “Supporting Information for the manuscript entitled “Ultra-fast sweep-tuned spectrum analyzer with temporal resolution based on a spin-torque nano-oscillator”, Nano Lett (2020). https://​doi.​org/​10.​1021/​acs.​nanolett.​0c02195
7.
go back to reference R. Verba, D. Navas, S. Bunyaev, A. Hierro-Rodriguez, K. Guslienko, B. Ivanov, and G. Kakazei, “Helicity of magnetic vortices and skyrmions in soft ferromagnetic nanodots and films biased by stray radial fields,” Phys. Rev. 101, 064429 (2020).CrossRef R. Verba, D. Navas, S. Bunyaev, A. Hierro-Rodriguez, K. Guslienko, B. Ivanov, and G. Kakazei, “Helicity of magnetic vortices and skyrmions in soft ferromagnetic nanodots and films biased by stray radial fields,” Phys. Rev. 101, 064429 (2020).CrossRef
8.
go back to reference K. Guslienko, “Magnetic vortex state stability, reversal and dynamics in restricted geometries,” J. Nanosci. Nanotechnol. 8, No. 6, 2745–2760 (2008).CrossRef K. Guslienko, “Magnetic vortex state stability, reversal and dynamics in restricted geometries,” J. Nanosci. Nanotechnol. 8, No. 6, 2745–2760 (2008).CrossRef
9.
go back to reference P. D. Kim, R. Y. Rudenko, T. V. Rudenko, V. A. Orlov, V. S. Prokopenko, S. S. Zamai, and V. Y. Prints, “On the low-frequency resonance of magnetic vortices in micro- and nanodots,” Phys. Solid State 57, 30–37 (2015).CrossRef P. D. Kim, R. Y. Rudenko, T. V. Rudenko, V. A. Orlov, V. S. Prokopenko, S. S. Zamai, and V. Y. Prints, “On the low-frequency resonance of magnetic vortices in micro- and nanodots,” Phys. Solid State 57, 30–37 (2015).CrossRef
10.
go back to reference Y. Gaididei, V. Kravchuk, and D. Sheka, “Magnetic vortex dynamics induced by an electrical current,” Int. J. Quantum Chem. 110, No. 1, 83–97 (2010).CrossRef Y. Gaididei, V. Kravchuk, and D. Sheka, “Magnetic vortex dynamics induced by an electrical current,” Int. J. Quantum Chem. 110, No. 1, 83–97 (2010).CrossRef
11.
go back to reference K. Guslienko, “Nonlinear magnetic vortex dynamics in a circular nanodot excited by spin-polarized current,” Nanoscale Res. Lett. 9, No. 1, 386 (2014).CrossRef K. Guslienko, “Nonlinear magnetic vortex dynamics in a circular nanodot excited by spin-polarized current,” Nanoscale Res. Lett. 9, No. 1, 386 (2014).CrossRef
12.
go back to reference B. Ivanov and C. Zaspel, “Excitation of spin dynamics by spin-polarized current in vortex state magnetic disks,” Phys. Rev. Lett. 99, No. 24, 247208 (2007).CrossRef B. Ivanov and C. Zaspel, “Excitation of spin dynamics by spin-polarized current in vortex state magnetic disks,” Phys. Rev. Lett. 99, No. 24, 247208 (2007).CrossRef
13.
go back to reference A. Khvalkovskiy, J. Grollier, A. Dussaux, K. Zvezdin, and V. Cros, “Vortex oscillations induced by spinpolarized current in a magnetic nanopillar: Analytical versus micromagnetic calculations,” Phys. Rev. B 80, No. 14, 140401 (2009).CrossRef A. Khvalkovskiy, J. Grollier, A. Dussaux, K. Zvezdin, and V. Cros, “Vortex oscillations induced by spinpolarized current in a magnetic nanopillar: Analytical versus micromagnetic calculations,” Phys. Rev. B 80, No. 14, 140401 (2009).CrossRef
14.
go back to reference M. Stebliy, S. Jain, A. Kolesnikov, A. Ognev, A. Samardak, A. Davydenko, E. Sukovatitcina, L. Chebotkevich, J. Ding, J. Pearson, V. Khovaylo, and V. Novosad, “Vortex dynamics and frequency splitting in vertically coupled nanomagnets,” Sci. Rep. 7, No. 1, 1–7 (2017).CrossRef M. Stebliy, S. Jain, A. Kolesnikov, A. Ognev, A. Samardak, A. Davydenko, E. Sukovatitcina, L. Chebotkevich, J. Ding, J. Pearson, V. Khovaylo, and V. Novosad, “Vortex dynamics and frequency splitting in vertically coupled nanomagnets,” Sci. Rep. 7, No. 1, 1–7 (2017).CrossRef
15.
go back to reference K. Guslienko, K. Buchanan, S. Bader, and V. Novosad, “Dynamics of coupled vortices in layered magnetic nanodots,” J. Appl. Phys. Lett. 86, 223112 (2005).CrossRef K. Guslienko, K. Buchanan, S. Bader, and V. Novosad, “Dynamics of coupled vortices in layered magnetic nanodots,” J. Appl. Phys. Lett. 86, 223112 (2005).CrossRef
16.
go back to reference N. Locatelli, A. Ekomasov, A. Khvalkovskiy, Sh. Azamatov, K. Zvezdin, J. Grollier, E. Ekomasov, and V. Cros, “Reversal process of a magnetic vortex core under the combined action of a perpendicular field and spin transfer torque,” Appl. Phys. Lett. 102, 062401 (2013).CrossRef N. Locatelli, A. Ekomasov, A. Khvalkovskiy, Sh. Azamatov, K. Zvezdin, J. Grollier, E. Ekomasov, and V. Cros, “Reversal process of a magnetic vortex core under the combined action of a perpendicular field and spin transfer torque,” Appl. Phys. Lett. 102, 062401 (2013).CrossRef
17.
go back to reference A. Ekomasov, A. Khval’kovskii, K. Zvezdin, and E. Ekomasov, “Simulation of static and dynamic scenarios for switching the polarization of magnetic vortices in a nanocolumnar conducting three-layer structure,” Izv. RAN Ser. Fiz. 77, No. 10, 1490–1492 (2013). A. Ekomasov, A. Khval’kovskii, K. Zvezdin, and E. Ekomasov, “Simulation of static and dynamic scenarios for switching the polarization of magnetic vortices in a nanocolumnar conducting three-layer structure,” Izv. RAN Ser. Fiz. 77, No. 10, 1490–1492 (2013).
18.
go back to reference N. Locatelli, R. Lebrun, V. Naletov, A. Hamadeh, G. De Loubens, O. Klein, J. Grollier, and V. Cros, “Improved spectral stability in spin-transfer nano oscillators: single vortex versus coupled vortices dynamics,” IEEE Trans. Magn. 51, No. 8, 4300206 (2015).CrossRef N. Locatelli, R. Lebrun, V. Naletov, A. Hamadeh, G. De Loubens, O. Klein, J. Grollier, and V. Cros, “Improved spectral stability in spin-transfer nano oscillators: single vortex versus coupled vortices dynamics,” IEEE Trans. Magn. 51, No. 8, 4300206 (2015).CrossRef
19.
go back to reference S. Cherepov, B. Koop, A. Galkin, R. Khymyn, B. Ivanov, D. Worledge, and V. Korenivski, “Core-core dynamics in spin vortex pairs,” Phys. Rev. Lett. 109, No. 9, 097204 (2012). S. Cherepov, B. Koop, A. Galkin, R. Khymyn, B. Ivanov, D. Worledge, and V. Korenivski, “Core-core dynamics in spin vortex pairs,” Phys. Rev. Lett. 109, No. 9, 097204 (2012).
21.
go back to reference A. E. Ekomasov, S. V. Stepanov, E. G. Ekomasov, and K. A. Zvezdin, “Influence of perpendicular magnetic field and polarized current on the dynamics of coupled magnetic vortices in a thin nanocolumnar trilayer conducting structure,” Phys. Met. Metallogr. 118, No. 4, 328–333 (2017).CrossRef A. E. Ekomasov, S. V. Stepanov, E. G. Ekomasov, and K. A. Zvezdin, “Influence of perpendicular magnetic field and polarized current on the dynamics of coupled magnetic vortices in a thin nanocolumnar trilayer conducting structure,” Phys. Met. Metallogr. 118, No. 4, 328–333 (2017).CrossRef
22.
go back to reference E. Holmgren, A. Bondarenko, B. Ivanov, and V. Korenivski, “Resonant pinning spectroscopy with spin-vortex pairs,” Phys. Rev. B 97, No. 9, 094406 (2018).CrossRef E. Holmgren, A. Bondarenko, B. Ivanov, and V. Korenivski, “Resonant pinning spectroscopy with spin-vortex pairs,” Phys. Rev. B 97, No. 9, 094406 (2018).CrossRef
23.
go back to reference A. Ekomasov, S. Stepanov, K. Zvezdin, and E. Ekomasov, “Spin current induced dynamics and polarity switching of coupled magnetic vertices in three-layer nanopillars,” J. Met., Mater. Miner. 471, 513–520 (2019). A. Ekomasov, S. Stepanov, K. Zvezdin, and E. Ekomasov, “Spin current induced dynamics and polarity switching of coupled magnetic vertices in three-layer nanopillars,” J. Met., Mater. Miner. 471, 513–520 (2019).
24.
go back to reference S. V. Stepanov, A. E. Ekomasov, E. G. Ekomasov, and K. A. Zvezdin, “Dynamics of coupled magnetic vortices in trilayer conducting nanocylinder,” Phys. Solid State 60, No. 6, 1055–1060 (2018).CrossRef S. V. Stepanov, A. E. Ekomasov, E. G. Ekomasov, and K. A. Zvezdin, “Dynamics of coupled magnetic vortices in trilayer conducting nanocylinder,” Phys. Solid State 60, No. 6, 1055–1060 (2018).CrossRef
25.
go back to reference J. Leliaert and J. Mulkers, “Tomorrow’s micromagnetic simulations,” J. Appl. Phys. 125, 18901-1–18901-9 (2019). J. Leliaert and J. Mulkers, “Tomorrow’s micromagnetic simulations,” J. Appl. Phys. 125, 18901-1–18901-9 (2019).
26.
go back to reference A. Ekomasov, C. Stepanov, and E. Ekomasov, “Simulation of switching of vortex cores in a nanocolumnar conductive three-layer structure,” Pis’ma o Mater. 6, No. 1, 46–48 (2016). A. Ekomasov, C. Stepanov, and E. Ekomasov, “Simulation of switching of vortex cores in a nanocolumnar conductive three-layer structure,” Pis’ma o Mater. 6, No. 1, 46–48 (2016).
Metadata
Title
The Effect of the Spin-Polarized Current on the Dynamics and Structural Changes of Magnetic Vortices in a Large-Diameter Three-Layer Conducting Nanocylinder
Authors
E. G. Ekomasov
S. V. Stepanov
K. A. Zvezdin
N. G. Pugach
G. I. Antonov
Publication date
01-03-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 3/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21030054

Other articles of this Issue 3/2021

Physics of Metals and Metallography 3/2021 Go to the issue