Skip to main content
Top
Published in: Physics of Metals and Metallography 3/2021

01-03-2021 | ELECTRICAL AND MAGNETIC PROPERTIES

Dielectric Function of a Spherical Metallic Nanoparticle

Authors: A. A. Koval, A. V. Korotun

Published in: Physics of Metals and Metallography | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The interaction of electromagnetic waves with a spherical metallic nanoparticle is studied in this work. Within the model of an infinite spherical potential well, taking into account the size dependence of the Fermi energy, a formula for the dielectric tensor is obtained and its diagonal components are calculated. The calculation results demonstrate a strong size and frequency dependencies of the real and imaginary parts of the dielectric function. Calculations were performed for Ag, Cu, and Al particles.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. Ruppin and H. Yatom, “Size and shape effects on the broadening of the plasma resonance absorption in metals,” Phys. Status Solidi B 74, 647–654 (1976).CrossRef R. Ruppin and H. Yatom, “Size and shape effects on the broadening of the plasma resonance absorption in metals,” Phys. Status Solidi B 74, 647–654 (1976).CrossRef
2.
go back to reference D. M. Wood and N. W. Ashcroft, “Quantum size effects in the optical properties of small metallic particles,” Phys. Rev. B 25, 6255–6274 (1982).CrossRef D. M. Wood and N. W. Ashcroft, “Quantum size effects in the optical properties of small metallic particles,” Phys. Rev. B 25, 6255–6274 (1982).CrossRef
3.
go back to reference U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156, 678–700 (1985).CrossRef U. Kreibig and L. Genzel, “Optical absorption of small metallic particles,” Surf. Sci. 156, 678–700 (1985).CrossRef
4.
go back to reference T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1988).CrossRef T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1988).CrossRef
5.
go back to reference P. M. Tomchuk and B. P. Tomchuk, “Optical absorption by small metallic particles,” J. Exp. Theor. Phys. 85, 360–369 (1997).CrossRef P. M. Tomchuk and B. P. Tomchuk, “Optical absorption by small metallic particles,” J. Exp. Theor. Phys. 85, 360–369 (1997).CrossRef
6.
go back to reference R. A. Serota and B. Goodman, “Quantum absorption in small metal particles,” Mod. Phys. Lett. B 13, 969–976 (1999).CrossRef R. A. Serota and B. Goodman, “Quantum absorption in small metal particles,” Mod. Phys. Lett. B 13, 969–976 (1999).CrossRef
7.
go back to reference F. A. Ivanyuk, “Dielectric function of metal clusters: Finite-size effects and the macroscopic limit,” Phys. Rev. B 77, 155425 (2008).CrossRef F. A. Ivanyuk, “Dielectric function of metal clusters: Finite-size effects and the macroscopic limit,” Phys. Rev. B 77, 155425 (2008).CrossRef
8.
go back to reference A. A. Govyadinov, G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Theoretical and numerical investigation of the size dependent optical effects in metal nanoparticles,” Phys. Rev. B 84,155461 (2011).CrossRef A. A. Govyadinov, G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Theoretical and numerical investigation of the size dependent optical effects in metal nanoparticles,” Phys. Rev. B 84,155461 (2011).CrossRef
9.
go back to reference M. Zapata-Herrera, A. S. Camacho, and H. Y. Ramírez, “Influence of the confinement potential on the size-dependent optical response of metallic nanometric particles,” Comput. Phys. Commun. 227, 1–8 (2018).CrossRef M. Zapata-Herrera, A. S. Camacho, and H. Y. Ramírez, “Influence of the confinement potential on the size-dependent optical response of metallic nanometric particles,” Comput. Phys. Commun. 227, 1–8 (2018).CrossRef
10.
go back to reference V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).CrossRef V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).CrossRef
11.
go back to reference K. F. MacDonald, Z. L. Sámson, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).CrossRef K. F. MacDonald, Z. L. Sámson, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2009).CrossRef
12.
go back to reference R. B. Nielsen, M. D. Thoreson, W. Chen, A. Kristensen, J. M. Hvam, V. M. Shalaev, and A. Boltasseva, “Toward superlensing with metal–dielectric composites and multilayer,” Appl. Phys. B 100, 93–100 (2001). R. B. Nielsen, M. D. Thoreson, W. Chen, A. Kristensen, J. M. Hvam, V. M. Shalaev, and A. Boltasseva, “Toward superlensing with metal–dielectric composites and multilayer,” Appl. Phys. B 100, 93–100 (2001).
13.
go back to reference X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy,” Nanomedicine 2, 681–693 (2007).CrossRef X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy,” Nanomedicine 2, 681–693 (2007).CrossRef
14.
go back to reference R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).CrossRef R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).CrossRef
15.
go back to reference R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, and R. G. Osifchin, “Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters,” Science 273, 1690–1693 (1996).CrossRef R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, and R. G. Osifchin, “Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters,” Science 273, 1690–1693 (1996).CrossRef
16.
go back to reference V. I. Balykin and P. N. Melent’ev, “Optics and spectroscopy of a single plasmonic nanostructure,” Phys. Usp. 61, No. 2, 133–156 (2018).CrossRef V. I. Balykin and P. N. Melent’ev, “Optics and spectroscopy of a single plasmonic nanostructure,” Phys. Usp. 61, No. 2, 133–156 (2018).CrossRef
17.
go back to reference A. V. Korotun and A. A. Koval’, “Dielectric tensor of a metal nanowire with an elliptical cross section,” Phys. Met. Metallogr. 120, No.7, 621–625 (2019).CrossRef A. V. Korotun and A. A. Koval’, “Dielectric tensor of a metal nanowire with an elliptical cross section,” Phys. Met. Metallogr. 120, No.7, 621–625 (2019).CrossRef
18.
go back to reference A. Kawabata and R. Kubo, “Electronic properties of fine metallic particles. II. Plasma resonance absorption,” J. Phys. Soc. Jpn. 21, 1765–1772 (1966).CrossRef A. Kawabata and R. Kubo, “Electronic properties of fine metallic particles. II. Plasma resonance absorption,” J. Phys. Soc. Jpn. 21, 1765–1772 (1966).CrossRef
19.
go back to reference W. C. Huang and J. T. Lue, “Quantum size effect on the optical properties of small metallic particles,” Phys. Rev. B 49, 17279–17285 (1994).CrossRef W. C. Huang and J. T. Lue, “Quantum size effect on the optical properties of small metallic particles,” Phys. Rev. B 49, 17279–17285 (1994).CrossRef
20.
go back to reference L. Sander, “Quantum theory of perpendicular electrical conductivity in a thin metallic film,” J. Phys. Chem. Solids 29, 291–294 (1968).CrossRef L. Sander, “Quantum theory of perpendicular electrical conductivity in a thin metallic film,” J. Phys. Chem. Solids 29, 291–294 (1968).CrossRef
21.
go back to reference M. Cini and P. Ascarelli, “Quantum size effects in metal particles and thin films by an extended RPA,” J. Phys. F 4, 1998–2008 (1974).CrossRef M. Cini and P. Ascarelli, “Quantum size effects in metal particles and thin films by an extended RPA,” J. Phys. F 4, 1998–2008 (1974).CrossRef
22.
go back to reference G. N. Blackman and D. A. Genov, “Bounds on quantum confinement effects in metal nanoparticles,” Phys. Rev. B 97, 115440 (2018).CrossRef G. N. Blackman and D. A. Genov, “Bounds on quantum confinement effects in metal nanoparticles,” Phys. Rev. B 97, 115440 (2018).CrossRef
23.
go back to reference V. P. Kurbatsky and V. V. Pogosov, “Optical conductivity of metal nanofilms and nanowires: The rectangular-box model,” Phys. Rev. B 81, 155404 (2010).CrossRef V. P. Kurbatsky and V. V. Pogosov, “Optical conductivity of metal nanofilms and nanowires: The rectangular-box model,” Phys. Rev. B 81, 155404 (2010).CrossRef
24.
go back to reference A. V. Korotun, “Size dependence of the Fermi energy of spherical metal nanocluster,” J. Nano-Electron. Phys. 7, No. 3, 03028 (2015). A. V. Korotun, “Size dependence of the Fermi energy of spherical metal nanocluster,” J. Nano-Electron. Phys. 7, No. 3, 03028 (2015).
25.
go back to reference N. W. Aschcroft and N. D. Mermin, Solid State Physics (Holt, Renehart, and Winston, New York, 1976), Vol. 1. N. W. Aschcroft and N. D. Mermin, Solid State Physics (Holt, Renehart, and Winston, New York, 1976), Vol. 1.
Metadata
Title
Dielectric Function of a Spherical Metallic Nanoparticle
Authors
A. A. Koval
A. V. Korotun
Publication date
01-03-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 3/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21030108

Other articles of this Issue 3/2021

Physics of Metals and Metallography 3/2021 Go to the issue

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Bainitic Transformations in Titanium Alloys