Skip to main content
Top
Published in: Journal of Sol-Gel Science and Technology 2/2016

01-02-2016 | Original Paper

The influence of tetraethoxysilane sol preparation on the electrospinning of silica nanofibers

Authors: Jozefien Geltmeyer, Jonathan De Roo, Freya Van den Broeck, José C. Martins, Klaartje De Buysser, Karen De Clerck

Published in: Journal of Sol-Gel Science and Technology | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The critical parameters determining the electrospinning of silica nanofibers starting from tetraethoxysilane sols are reported. By controlling the reaction conditions, the rheological properties of the sol allowed for electrospinning without needing the addition of an organic polymer. This allows the polymer removal step, which is deleterious to the fibers and an economic and ecological inconvenience, to be skipped. The effects on the electrospinning process of the viscosity of the sol, the concentration of ethanol, the degree of crosslinking and the size of the colloidal species were studied in depth with ATR-FTIR, 29Si NMR, 1H NMR and DLS. Moreover, to separate the contributions of the different parameters three different set-ups for sol preparation were used. An optimum amount of 9 mol L−1 ethanol for electrospinning was determined. In addition, the optimum degree of crosslinking and size of colloidal particles, approximately 3.5–7 nm, were obtained for stable electrospinning and for producing uniform, beadless nanofibers that were stable in time. The optimum viscosity range is in between 100 and 200 mPa s, which is in line with previous work. Using these optimum conditions, continuous electrospinning was carried out for 3 h, resulting in large flexible silica nanofibrous membranes.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dai Y, Liu W, Formo E, Sun Y, Xia Y (2011) Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science and energy technology. Polym Adv Technol 22:326–338CrossRef Dai Y, Liu W, Formo E, Sun Y, Xia Y (2011) Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science and energy technology. Polym Adv Technol 22:326–338CrossRef
2.
go back to reference Sigmund W, Yuh J, Park H, Maneeratana V, Pyrgiotakis G, Daga A, Taylor J, Nino J (2006) Processing and structure relationships in electrospinning of ceramic fiber systems. J Am Ceram Soc 89(2):395–407CrossRef Sigmund W, Yuh J, Park H, Maneeratana V, Pyrgiotakis G, Daga A, Taylor J, Nino J (2006) Processing and structure relationships in electrospinning of ceramic fiber systems. J Am Ceram Soc 89(2):395–407CrossRef
3.
go back to reference Li D, McCann J, Xia Y, Marquez M (2006) Electrospinning: a simple and versatile technique for producing ceramic nanofibers and nanotubes. J Am Ceram Soc 89(6):1861–1869CrossRef Li D, McCann J, Xia Y, Marquez M (2006) Electrospinning: a simple and versatile technique for producing ceramic nanofibers and nanotubes. J Am Ceram Soc 89(6):1861–1869CrossRef
4.
go back to reference Ramaseshan R, Sundarrajan S, Jose R, Ramakrishna S (2007) Nanostructured ceramics by electrospinning. J Appl Phys 102(11):111101CrossRef Ramaseshan R, Sundarrajan S, Jose R, Ramakrishna S (2007) Nanostructured ceramics by electrospinning. J Appl Phys 102(11):111101CrossRef
5.
go back to reference Cavaliere S, Subianto S, Savych I, Jones DJ, Rozière J (2011) Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ Sci 4:4761–4785CrossRef Cavaliere S, Subianto S, Savych I, Jones DJ, Rozière J (2011) Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ Sci 4:4761–4785CrossRef
6.
go back to reference Du P, Song L, Xiong J, Cui C (2013) Optimization of electrospun TiO2 nanofibers photoanode film for dye-sensitized solar cells through interfacial pretreatment, controllable calcination, and surface post-treatment. Surf Interface Anal 45:1878–1883CrossRef Du P, Song L, Xiong J, Cui C (2013) Optimization of electrospun TiO2 nanofibers photoanode film for dye-sensitized solar cells through interfacial pretreatment, controllable calcination, and surface post-treatment. Surf Interface Anal 45:1878–1883CrossRef
7.
go back to reference Wang X, Fan H, Ren P, Yu H, Li J (2012) A simple route to disperse silver nanoparticles on the surface of silica nanofibers with excellent photocatalytic properties. Mater Res Bull 47:1734–1739CrossRef Wang X, Fan H, Ren P, Yu H, Li J (2012) A simple route to disperse silver nanoparticles on the surface of silica nanofibers with excellent photocatalytic properties. Mater Res Bull 47:1734–1739CrossRef
8.
go back to reference Irani M, Keshtkar AR, Moosavian MA (2012) Removal of cadmium from aqueous solution using mesoporous PVA/TEOS/APTES composite nanofibers prepared by sol–gel electrospinning. Chem Eng J 200:192–201CrossRef Irani M, Keshtkar AR, Moosavian MA (2012) Removal of cadmium from aqueous solution using mesoporous PVA/TEOS/APTES composite nanofibers prepared by sol–gel electrospinning. Chem Eng J 200:192–201CrossRef
9.
go back to reference Wu S, Li F, Wu Y, Xu R, Li G (2010) Preparation of novel poly(vinyl alcohol)/SiO2 composite nanofiber membranes with mesostructure and their application for removal of Cu2+ from waste water. Chem Commun 46:1694–1696CrossRef Wu S, Li F, Wu Y, Xu R, Li G (2010) Preparation of novel poly(vinyl alcohol)/SiO2 composite nanofiber membranes with mesostructure and their application for removal of Cu2+ from waste water. Chem Commun 46:1694–1696CrossRef
10.
go back to reference Ma Z, Ji H, Teng Y, Dong G, Zhou J, Tan D, Qiu J (2011) Engineering and optimization of nano- and mesoporous silica fibers using sol–gel and electrospinning techniques for sorption of heavy metal ions. J Colloid Interface Sci 358:547–553CrossRef Ma Z, Ji H, Teng Y, Dong G, Zhou J, Tan D, Qiu J (2011) Engineering and optimization of nano- and mesoporous silica fibers using sol–gel and electrospinning techniques for sorption of heavy metal ions. J Colloid Interface Sci 358:547–553CrossRef
11.
go back to reference Sundarrajan S, Chandrasekaran AR, Ramakrishna S (2010) An update on nanomaterials-based textiles for protection and decontamination. J Am Ceram Soc 93(12):3955–3975CrossRef Sundarrajan S, Chandrasekaran AR, Ramakrishna S (2010) An update on nanomaterials-based textiles for protection and decontamination. J Am Ceram Soc 93(12):3955–3975CrossRef
12.
go back to reference Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Review feature. Mater Today 9(3):40–50CrossRef Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Review feature. Mater Today 9(3):40–50CrossRef
13.
go back to reference Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z (2005) An introduction to electrospinning of nanofibers. World Scientific, SingaporeCrossRef Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z (2005) An introduction to electrospinning of nanofibers. World Scientific, SingaporeCrossRef
14.
go back to reference Wendorff JH, Agarwal S, Greiner A (2012) Electrospinning: materials, processing and applications. Wiley, WeinheimCrossRef Wendorff JH, Agarwal S, Greiner A (2012) Electrospinning: materials, processing and applications. Wiley, WeinheimCrossRef
15.
go back to reference Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel. Adv Mater 16(14):1151–1170CrossRef Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel. Adv Mater 16(14):1151–1170CrossRef
16.
go back to reference Greiner A, Wendorff J (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670–5703CrossRef Greiner A, Wendorff J (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670–5703CrossRef
17.
go back to reference De Schoenmaker B, Goethals A, Van der Schueren L, Rahier H, De Clerck K (2012) Polyamide 6.9 nanofibres electrospun under steady state conditions from a solvent/non-solvent solution. J Mater Sci 47:4118–4126CrossRef De Schoenmaker B, Goethals A, Van der Schueren L, Rahier H, De Clerck K (2012) Polyamide 6.9 nanofibres electrospun under steady state conditions from a solvent/non-solvent solution. J Mater Sci 47:4118–4126CrossRef
18.
go back to reference De Vrieze S, De Schoenmaker B, Ceylan O, Depuydt J, Van Landuyt L, Rahier H, Van Assche G, De Clerck K (2011) Morphologic study of steady state electrospun polyamide 6 nanofibres. J Appl Polym Sci 119(5):2984–2990CrossRef De Vrieze S, De Schoenmaker B, Ceylan O, Depuydt J, Van Landuyt L, Rahier H, Van Assche G, De Clerck K (2011) Morphologic study of steady state electrospun polyamide 6 nanofibres. J Appl Polym Sci 119(5):2984–2990CrossRef
19.
go back to reference Van der Schueren L, De Schoenmaker B, Kalaoglu Ö, De Clerck K (2011) An alternative solvent system for the steady state electrospinning of polycaprolactone. Eur Polym J 47(6):1256–1263CrossRef Van der Schueren L, De Schoenmaker B, Kalaoglu Ö, De Clerck K (2011) An alternative solvent system for the steady state electrospinning of polycaprolactone. Eur Polym J 47(6):1256–1263CrossRef
20.
go back to reference Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San Diego Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San Diego
21.
go back to reference Carter CB, Norton MG (2007) Ceramic materials. Science and engineering. Springer, New York Carter CB, Norton MG (2007) Ceramic materials. Science and engineering. Springer, New York
22.
go back to reference Mahltig B, Textor T (2008) Nanosols and textiles. World Scientific, SingaporeCrossRef Mahltig B, Textor T (2008) Nanosols and textiles. World Scientific, SingaporeCrossRef
23.
go back to reference Choi SS, Lee SG, Im SS, Kim SG, Joo YL (2003) Silica nanofibers from electrospinning/sol–gel process. J Mater Sci Lett 22:891–893CrossRef Choi SS, Lee SG, Im SS, Kim SG, Joo YL (2003) Silica nanofibers from electrospinning/sol–gel process. J Mater Sci Lett 22:891–893CrossRef
24.
go back to reference Choi SS, Chu B, Lee SG, Lee SW, Im SS, Kim SH, Park JK (2004) Titania-doped silica fibers prepared by electrospinning and sol–gel process. J Sol–Gel Sci Technol 30:215–221CrossRef Choi SS, Chu B, Lee SG, Lee SW, Im SS, Kim SH, Park JK (2004) Titania-doped silica fibers prepared by electrospinning and sol–gel process. J Sol–Gel Sci Technol 30:215–221CrossRef
25.
go back to reference Toskas G, Cherif C, Hund RD, Laourine E, Mahltig B, Fahmi C, Heinemann C, Hanke T (2013) Chitosan(PEO)/silica hybrid nanofibers as a potential material for bone regeneration. Carbohydr Polym 94:713–722CrossRef Toskas G, Cherif C, Hund RD, Laourine E, Mahltig B, Fahmi C, Heinemann C, Hanke T (2013) Chitosan(PEO)/silica hybrid nanofibers as a potential material for bone regeneration. Carbohydr Polym 94:713–722CrossRef
26.
go back to reference Li D, Xia Y (2003) Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett 3:555CrossRef Li D, Xia Y (2003) Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett 3:555CrossRef
27.
go back to reference Li D, Xia Y (2004) Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 3:933CrossRef Li D, Xia Y (2004) Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 3:933CrossRef
28.
go back to reference Azad AM (2006) Fabrication of transparent alumina (Al2O3) nanofibers by electrospinning. Mater Sci Eng A 435–436:468–473CrossRef Azad AM (2006) Fabrication of transparent alumina (Al2O3) nanofibers by electrospinning. Mater Sci Eng A 435–436:468–473CrossRef
29.
go back to reference Formo E, Camargo PHC, Lim B, Jiang MJ, Xia YN (2009) Functionalization of ZrO2 nanofibers with Pt nanostructures: the effect of surface roughness on nucleation mechanism and morphology control. Chem Phys Lett 476:56–61CrossRef Formo E, Camargo PHC, Lim B, Jiang MJ, Xia YN (2009) Functionalization of ZrO2 nanofibers with Pt nanostructures: the effect of surface roughness on nucleation mechanism and morphology control. Chem Phys Lett 476:56–61CrossRef
30.
go back to reference Formo E, Yavuz MS, Lee EP, Lane L, Xia YN (2009) Functionalization of electrospun ceramic nanofiber membranes with noble-metal nanostructures for catalytic applications. J Mater Chem 19:3878–3882CrossRef Formo E, Yavuz MS, Lee EP, Lane L, Xia YN (2009) Functionalization of electrospun ceramic nanofiber membranes with noble-metal nanostructures for catalytic applications. J Mater Chem 19:3878–3882CrossRef
31.
go back to reference Lee SX, Kim YU, Choi SS, Park TY, Joo YL (2007) Preparation of SiO2/TiO2 composite fibers by sol–gel reaction and electrospinning. Mater Lett 61(3):889–893CrossRef Lee SX, Kim YU, Choi SS, Park TY, Joo YL (2007) Preparation of SiO2/TiO2 composite fibers by sol–gel reaction and electrospinning. Mater Lett 61(3):889–893CrossRef
32.
go back to reference Geltmeyer J, Van der Schueren L, Goethals F, De Buysser K, De Clerck K (2013) Optimum sol viscosity for stable electrospinning of silica nanofibers. J Sol–Gel Sci Technol 67(1):188–195CrossRef Geltmeyer J, Van der Schueren L, Goethals F, De Buysser K, De Clerck K (2013) Optimum sol viscosity for stable electrospinning of silica nanofibers. J Sol–Gel Sci Technol 67(1):188–195CrossRef
33.
go back to reference Brinker CJ, Assink RA (1989) Spinnability of silica sols: structural and rheological criteria. J Non-Cryst Solids 111:48–54CrossRef Brinker CJ, Assink RA (1989) Spinnability of silica sols: structural and rheological criteria. J Non-Cryst Solids 111:48–54CrossRef
34.
go back to reference Sakka S, Yoko T (1992) Fibers from gels. J Non-Cryst Solids 147–148:394–403CrossRef Sakka S, Yoko T (1992) Fibers from gels. J Non-Cryst Solids 147–148:394–403CrossRef
35.
go back to reference Sakka S, Kozuka H (1988) Rheology of sols and fiber drawing. J Non-Cryst Solid 100:142–153CrossRef Sakka S, Kozuka H (1988) Rheology of sols and fiber drawing. J Non-Cryst Solid 100:142–153CrossRef
36.
go back to reference Pouxviel JC, Boilot JP (1987) NMR study of the sol/gel polymerization. J Non-Cryst Solids 89:345–360CrossRef Pouxviel JC, Boilot JP (1987) NMR study of the sol/gel polymerization. J Non-Cryst Solids 89:345–360CrossRef
37.
go back to reference Depla A et al (2011) UV-Raman and 29Si NMR spectroscopy investigation of the nature of silicate oligomers formed by acid catalyzed hydrolysis and polycondensation of tetramethylorthosilicate. J Phys Chem 115:11077–11088 Depla A et al (2011) UV-Raman and 29Si NMR spectroscopy investigation of the nature of silicate oligomers formed by acid catalyzed hydrolysis and polycondensation of tetramethylorthosilicate. J Phys Chem 115:11077–11088
38.
go back to reference Depla A et al (2011) 29Si NMR and UV-Raman investigation of initial oligomerization reaction pathways in acid-catalyzed silica sol–gel chemistry. J Phys Chem 115:3562–3571 Depla A et al (2011) 29Si NMR and UV-Raman investigation of initial oligomerization reaction pathways in acid-catalyzed silica sol–gel chemistry. J Phys Chem 115:3562–3571
39.
go back to reference Malay O, Yilgor I, Menceloglu Y (2013) Effect of solvent on TEOS hydrolysis kinetics and silica particle size under basic conditions. J Sol–Gel Sci Technol 67:351–361CrossRef Malay O, Yilgor I, Menceloglu Y (2013) Effect of solvent on TEOS hydrolysis kinetics and silica particle size under basic conditions. J Sol–Gel Sci Technol 67:351–361CrossRef
40.
go back to reference Sadisivan S, Dubey AK, Li Y, Rasmussen DH (1998) Alcoholic solvent effect on silica synthesis—NMR and DLS investigation. J Sol–Gel Sci Technol 12:5–14CrossRef Sadisivan S, Dubey AK, Li Y, Rasmussen DH (1998) Alcoholic solvent effect on silica synthesis—NMR and DLS investigation. J Sol–Gel Sci Technol 12:5–14CrossRef
41.
go back to reference Smith B (1999) Infrared spectral interpretation: a systematic approach. CRC Press, Boca Raton Smith B (1999) Infrared spectral interpretation: a systematic approach. CRC Press, Boca Raton
42.
go back to reference Pirzada T, Arvidson SA, Saquing CD, Shah SS, Khan SA (2012) Hybrid silica-PVA nanofibers via sol–gel electrospinning. Langmuir 28:5834–5844CrossRef Pirzada T, Arvidson SA, Saquing CD, Shah SS, Khan SA (2012) Hybrid silica-PVA nanofibers via sol–gel electrospinning. Langmuir 28:5834–5844CrossRef
43.
go back to reference Innocenzi P (2003) Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructure overview. J Non-Cryst Solids 316:309–319CrossRef Innocenzi P (2003) Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructure overview. J Non-Cryst Solids 316:309–319CrossRef
44.
go back to reference McCormick AV, Bell AT, Radke CJ (1987) Quantitative determination of siliceous species in sodium silicate solutions by 29Si NMR spectroscopy. Zeolites 7:183CrossRef McCormick AV, Bell AT, Radke CJ (1987) Quantitative determination of siliceous species in sodium silicate solutions by 29Si NMR spectroscopy. Zeolites 7:183CrossRef
45.
go back to reference Schwarz J, Contescu X (1999) Surfaces of nanoparticles and porous materials. Marcel Dekker, New YorkCrossRef Schwarz J, Contescu X (1999) Surfaces of nanoparticles and porous materials. Marcel Dekker, New YorkCrossRef
46.
go back to reference Bahlmann E, Harris R, Say B (1993) Method for the quantification of silicon-29 NMR spectra, developed for viscous silicate solutions. Magn Reson Chem 31:266–267CrossRef Bahlmann E, Harris R, Say B (1993) Method for the quantification of silicon-29 NMR spectra, developed for viscous silicate solutions. Magn Reson Chem 31:266–267CrossRef
47.
go back to reference Iler RK (1979) The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry of silica. Wiley, New York Iler RK (1979) The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry of silica. Wiley, New York
48.
go back to reference He JH, Liu Y, Mo LF, Wan YQ, Xu L (2008) Electrospun nanofibers and their applications iSmithers. Shawbury, UK He JH, Liu Y, Mo LF, Wan YQ, Xu L (2008) Electrospun nanofibers and their applications iSmithers. Shawbury, UK
Metadata
Title
The influence of tetraethoxysilane sol preparation on the electrospinning of silica nanofibers
Authors
Jozefien Geltmeyer
Jonathan De Roo
Freya Van den Broeck
José C. Martins
Klaartje De Buysser
Karen De Clerck
Publication date
01-02-2016
Publisher
Springer US
Published in
Journal of Sol-Gel Science and Technology / Issue 2/2016
Print ISSN: 0928-0707
Electronic ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-015-3875-1

Other articles of this Issue 2/2016

Journal of Sol-Gel Science and Technology 2/2016 Go to the issue

Premium Partners