Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 2/2022

01-10-2021

The Laser Shock Peening Effect on Fatigue Performance of Curved Components with and Without Stress Concentrators

Authors: V. Granados-Alejo, C. Rubio-González, J. A. Banderas, S. Flores

Published in: Journal of Materials Engineering and Performance | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of laser shock peening (LSP) on the fatigue crack initiation of 2205 duplex stainless steel curved specimens was studied. The aim of this research work was to examine the effectiveness of LSP on curved beams when bending stress is dominant. Two curved specimen types were considered, one with smooth surfaces and another similar but with a small blind hole on the inner surface to investigate the effect of the stress concentrator. The technology implemented to perform the surface treatment consisted of a Nd: YAG pulsed laser 1064 nm, with frequency 10 Hz, releasing an energy of 1 J/pulse and with pulse density 2500 pulses/cm2. The confining medium was water and no protective coating was used. The residual stress in the specimens were determined using the contour method. Curved samples were prepared and treated with LSP only on the inner surface. Fatigue tests were conducted using a load ratio R = 0.1 and the results were compared to estimates obtained with a finite element software and fatigue analysis. LSP simulation by the finite element method followed by a fatigue analysis provided a satisfactory prediction of the onset of failure in curved samples. LSP simulation predicts a detrimental effect of LSP on smooth curved specimens where bending stress dominates over membrane stress. In the case of curved specimens with a stress concentrator on the inner surface, it was observed that LSP enhanced fatigue life by about 82%. SEM analysis of fracture surfaces provided findings coherent with the numerical predictions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. Sundar, P. Ganesh, R.K. Gupta, G. Ragvendra, B.K. Pant, V. Kain, K. Ranganathan, R. Kaul and K.S. Bindra, Laser Shock Peening and its Applications: A Review, Lasers Manuf. Mater. Process., 2019, 6, p 424–463. R. Sundar, P. Ganesh, R.K. Gupta, G. Ragvendra, B.K. Pant, V. Kain, K. Ranganathan, R. Kaul and K.S. Bindra, Laser Shock Peening and its Applications: A Review, Lasers Manuf. Mater. Process., 2019, 6, p 424–463.
2.
go back to reference S.A. Kumar, R. Sundar, S.G. Raman, H. Kumar, R. Kaul, K. Ranganathan, S.M. Oak, L.M. Kukreja and K.S. Bindra, Influence of Laser Peening on Microstructure and Fatigue Lives of Ti–6Al–4V, Trans. Nonferrous Metals Soc. China, 2014, 24(10), p 3111–3117. S.A. Kumar, R. Sundar, S.G. Raman, H. Kumar, R. Kaul, K. Ranganathan, S.M. Oak, L.M. Kukreja and K.S. Bindra, Influence of Laser Peening on Microstructure and Fatigue Lives of Ti–6Al–4V, Trans. Nonferrous Metals Soc. China, 2014, 24(10), p 3111–3117.
3.
go back to reference C. Rubio-González, J.L. Ocaña, G. Gomez-Rosas, C. Molpeceres, M. Paredes, A. Banderas, J. Porro and M. Morales, Effect of Laser Shock Processing on Fatigue Crack Growth and Fracture Toughness of 6061–T6 Aluminum Alloy, Mater. Sci. Eng. A, 2004, 386, p 291–295. C. Rubio-González, J.L. Ocaña, G. Gomez-Rosas, C. Molpeceres, M. Paredes, A. Banderas, J. Porro and M. Morales, Effect of Laser Shock Processing on Fatigue Crack Growth and Fracture Toughness of 6061–T6 Aluminum Alloy, Mater. Sci. Eng. A, 2004, 386, p 291–295.
4.
go back to reference M. Pavan, D. Furfari, B. Ahmad, M.A. Gharghouri and M.E. Fitzpatrick, Fatigue Crack Growth in a Laser Shock Peened Residual Stress Field, Int. J. Fatigue, 2019, 123, p 157–167. M. Pavan, D. Furfari, B. Ahmad, M.A. Gharghouri and M.E. Fitzpatrick, Fatigue Crack Growth in a Laser Shock Peened Residual Stress Field, Int. J. Fatigue, 2019, 123, p 157–167.
5.
go back to reference C. Rubio-González, C. Felix-Martinez, G. Gomez-Rosas, J.L. Ocaña, M. Morales and J. Porro, Effect of Laser Shock Processing on Fatigue Crack Growth of Duplex Stainless Steel, Mater. Sci. Eng. A, 2011, 528, p 914–919. C. Rubio-González, C. Felix-Martinez, G. Gomez-Rosas, J.L. Ocaña, M. Morales and J. Porro, Effect of Laser Shock Processing on Fatigue Crack Growth of Duplex Stainless Steel, Mater. Sci. Eng. A, 2011, 528, p 914–919.
6.
go back to reference U. Sánchez-Santana, C. Rubio-Gonzalez, G. Gomez-Rosas, J.L. Ocaña, C. Molpeceres, J. Porro and M. Morales, Wear and Friction of 6061–T6 Aluminum Alloy Treated by Laser Shock Processing, Wear, 2006, 260, p 847–854. U. Sánchez-Santana, C. Rubio-Gonzalez, G. Gomez-Rosas, J.L. Ocaña, C. Molpeceres, J. Porro and M. Morales, Wear and Friction of 6061–T6 Aluminum Alloy Treated by Laser Shock Processing, Wear, 2006, 260, p 847–854.
7.
go back to reference N.A. Smyth, M.B. Toparli, M.E. Fitzpatrick and P.E. Irving, Recovery of Fatigue Life Using Laser Peening on 2024–T351 Aluminium Sheet Containing Scratch Damage: The Role of Residual Stress, Fatigue Fract Eng Mater Struct, 2019, 42, p 1161–1174. N.A. Smyth, M.B. Toparli, M.E. Fitzpatrick and P.E. Irving, Recovery of Fatigue Life Using Laser Peening on 2024–T351 Aluminium Sheet Containing Scratch Damage: The Role of Residual Stress, Fatigue Fract Eng Mater Struct, 2019, 42, p 1161–1174.
8.
go back to reference K. Takahashi, Y. Kogishi, N. Shibuya and F. Kumeno, Effects of Laser Peening on the Fatigue Strength and Defect Tolerance of Aluminum Alloy, Fatigue Fract Eng Mater Struct, 2020, 43, p 845–856. K. Takahashi, Y. Kogishi, N. Shibuya and F. Kumeno, Effects of Laser Peening on the Fatigue Strength and Defect Tolerance of Aluminum Alloy, Fatigue Fract Eng Mater Struct, 2020, 43, p 845–856.
9.
go back to reference R. Fueki and K. Takahashi, Improving the Fatigue Limit and Rendering a Defect Harmless by Laser Peening for a High Strength Steel Welded Joint, Opt. Laser Technol., 2021, 134, p 106605. R. Fueki and K. Takahashi, Improving the Fatigue Limit and Rendering a Defect Harmless by Laser Peening for a High Strength Steel Welded Joint, Opt. Laser Technol., 2021, 134, p 106605.
10.
go back to reference N. Kashaev, D. Ushmaev, V. Ventzke, B. Klusemann and F. Fomin, On the Application of Laser Shock Peening for Retardation of Surface Fatigue Cracks in Laser Beam-welded AA6056, Fatigue Fract Eng Mater Struct, 2020, 43, p 1500–1513. N. Kashaev, D. Ushmaev, V. Ventzke, B. Klusemann and F. Fomin, On the Application of Laser Shock Peening for Retardation of Surface Fatigue Cracks in Laser Beam-welded AA6056, Fatigue Fract Eng Mater Struct, 2020, 43, p 1500–1513.
11.
go back to reference R. Sikhamov, F. Fomin, B. Klusemann and N. Kashaev, The Influence of Laser Shock Peening on Fatigue Properties of AA2024-T3 Alloy with a Fastener Hole, Metals, 2020, 10, p 495. R. Sikhamov, F. Fomin, B. Klusemann and N. Kashaev, The Influence of Laser Shock Peening on Fatigue Properties of AA2024-T3 Alloy with a Fastener Hole, Metals, 2020, 10, p 495.
12.
go back to reference L. Spadaro, G. Gomez-Rosas, C. Rubio-Gonzalez, R. Bolmaro, A. Chavez-Chavez and S. Hereñu, Fatigue Behavior of Superferritic Stainless Steel Laser Shock Treated Without Protective Coating, Opt. Laser Technol., 2017, 93, p 208–215. L. Spadaro, G. Gomez-Rosas, C. Rubio-Gonzalez, R. Bolmaro, A. Chavez-Chavez and S. Hereñu, Fatigue Behavior of Superferritic Stainless Steel Laser Shock Treated Without Protective Coating, Opt. Laser Technol., 2017, 93, p 208–215.
13.
go back to reference J.L. Ocaña, M. Morales, C. Molpeceres and J. Torres, Numerical Simulation of Surface Deformation and Residual Stresses Fields in Laser Shock Processing Experiments, Appl. Surf. Sci., 2004, 238, p 242–248. J.L. Ocaña, M. Morales, C. Molpeceres and J. Torres, Numerical Simulation of Surface Deformation and Residual Stresses Fields in Laser Shock Processing Experiments, Appl. Surf. Sci., 2004, 238, p 242–248.
14.
go back to reference G. Ivetic, Three-dimensional FEM Analysis of Laser Shock Peening of Aluminium Alloy 2024–T351 Thin Sheets, Surf. Eng., 2011, 27, p 445–453. G. Ivetic, Three-dimensional FEM Analysis of Laser Shock Peening of Aluminium Alloy 2024–T351 Thin Sheets, Surf. Eng., 2011, 27, p 445–453.
15.
go back to reference K. Ding and L. Ye, Simulation of Multiple Laser Shock Peening of a 35CD4 Steel Alloy, J. Maters. Proc. Technol., 2006, 178, p 162–169. K. Ding and L. Ye, Simulation of Multiple Laser Shock Peening of a 35CD4 Steel Alloy, J. Maters. Proc. Technol., 2006, 178, p 162–169.
16.
go back to reference C. Correa, L. Ruiz de Lara, M. Díaz, J.A. Porro, A. García-Beltrán and J.L. Ocaña, Influence of Pulse Sequence and Edge Material Effect on Fatigue Life of Al2024-T351 Specimens Treated by Laser Shock Processing, Int. J. Fatigue, 2015, 70, p 196–204. C. Correa, L. Ruiz de Lara, M. Díaz, J.A. Porro, A. García-Beltrán and J.L. Ocaña, Influence of Pulse Sequence and Edge Material Effect on Fatigue Life of Al2024-T351 Specimens Treated by Laser Shock Processing, Int. J. Fatigue, 2015, 70, p 196–204.
17.
go back to reference Y. Ochi, T. Matsumura, T. Ikarashi, K. Masaki, T. Kakiuchi, Y. Sano and T. Adachi, Effects of Laser Peening Treatment Without Protective Coating on Axial Fatigue Property of Aluminum Alloy, Procedia Engineering, 2010, 2(1), p 491–498. Y. Ochi, T. Matsumura, T. Ikarashi, K. Masaki, T. Kakiuchi, Y. Sano and T. Adachi, Effects of Laser Peening Treatment Without Protective Coating on Axial Fatigue Property of Aluminum Alloy, Procedia Engineering, 2010, 2(1), p 491–498.
18.
go back to reference M.P. Sealy, Y.B. Guo, R.C. Caslaru, J. Sharkins and D. Feldman, Fatigue Performance of Biodegradable Magnesium–calcium Alloy Processed by Laser Shock Peening for Orthopedic Implants, Int. J. Fatigue, 2016, 82, p 428–436. M.P. Sealy, Y.B. Guo, R.C. Caslaru, J. Sharkins and D. Feldman, Fatigue Performance of Biodegradable Magnesium–calcium Alloy Processed by Laser Shock Peening for Orthopedic Implants, Int. J. Fatigue, 2016, 82, p 428–436.
19.
go back to reference Y. Sano, K. Akita, K. Masaki, Y. Ochi, I. Altenberger and B. Scholtes, Laser Peening Without Coating as a Surface Enhancement Technology, JLMN-Journal Laser Micro/Nanoeng., 2006, 1(3), p 161–163. Y. Sano, K. Akita, K. Masaki, Y. Ochi, I. Altenberger and B. Scholtes, Laser Peening Without Coating as a Surface Enhancement Technology, JLMN-Journal Laser Micro/Nanoeng., 2006, 1(3), p 161–163.
20.
go back to reference Y. Sano, M. Obata, T. Kubo, N. Mukai, M. Yoda, K. Masaki and Y. Ochi, Retardation of Crack Initiation and Growth in Austenitic Stainless Steels by Laser Peening Without Protective Coating, Mater. Sci. Eng., A, 2006, 417, p 334–340. Y. Sano, M. Obata, T. Kubo, N. Mukai, M. Yoda, K. Masaki and Y. Ochi, Retardation of Crack Initiation and Growth in Austenitic Stainless Steels by Laser Peening Without Protective Coating, Mater. Sci. Eng., A, 2006, 417, p 334–340.
21.
go back to reference C. Peng, Y. Xiao, Y. Wang and W. Guo, Effect of Laser Shock Peening on Bending Fatigue Performance of AISI 9310 Steel Spur Gear, Opt. Laser Technol., 2017, 94, p 15–24. C. Peng, Y. Xiao, Y. Wang and W. Guo, Effect of Laser Shock Peening on Bending Fatigue Performance of AISI 9310 Steel Spur Gear, Opt. Laser Technol., 2017, 94, p 15–24.
22.
go back to reference A. Vasu and R.V. Grandhi, Effects of Curved Geometry on Residual Stress in Laser Peening, Surf. Coat. Technol., 2013, 218, p 71–79. A. Vasu and R.V. Grandhi, Effects of Curved Geometry on Residual Stress in Laser Peening, Surf. Coat. Technol., 2013, 218, p 71–79.
23.
go back to reference A. Vasu, Y. Hu and R.V. Grandhi, Differences in Plasticity Due to Curvature in Laser Peened Components, Surf. Coat. Technol., 2013, 235, p 648–656. A. Vasu, Y. Hu and R.V. Grandhi, Differences in Plasticity Due to Curvature in Laser Peened Components, Surf. Coat. Technol., 2013, 235, p 648–656.
24.
go back to reference A. Vasu, K. Gobal and R.V. Grandhi, Computational Methodology for Determining the Optimum Re-peening Schedule to Increase the Fatigue Life of Laser Peened Aircraft Components, Int. J. Fatigue, 2015, 70, p 395–405. A. Vasu, K. Gobal and R.V. Grandhi, Computational Methodology for Determining the Optimum Re-peening Schedule to Increase the Fatigue Life of Laser Peened Aircraft Components, Int. J. Fatigue, 2015, 70, p 395–405.
29.
go back to reference S. Adu-Gyamfi, X.D. Ren, E.A. Larson, Y. Ren and Z. Tong, The Effects of Laser Shock Peening Scanning Patterns on Residual Stress Distribution and Fatigue Life of AA2024 Aluminium Alloy, Opt. Laser Technol., 2018, 108, p 177–185. S. Adu-Gyamfi, X.D. Ren, E.A. Larson, Y. Ren and Z. Tong, The Effects of Laser Shock Peening Scanning Patterns on Residual Stress Distribution and Fatigue Life of AA2024 Aluminium Alloy, Opt. Laser Technol., 2018, 108, p 177–185.
30.
go back to reference X. Zhang, L. Chen, X. Yu, L. Zuo and Y. Zhou, Effect of laser shock processing on fatigue life of fastener hole, Trans. Nonferrous Metals Soc. China, 2014, 24(4), p 969–974. X. Zhang, L. Chen, X. Yu, L. Zuo and Y. Zhou, Effect of laser shock processing on fatigue life of fastener hole, Trans. Nonferrous Metals Soc. China, 2014, 24(4), p 969–974.
31.
go back to reference G. Ivetic, I. Meneghin, E. Troiani, G. Molinari, J.L. Ocaña, M. Morales, J. Porro, A. Lanciotti, V. Ristori, C. Polese, J. Plaisier and A. Lausi, Fatigue in Laser Shock Peened Open-Hole Thin Aluminium Specimens, Mater. Sci. Eng. A, 2012, 534, p 573–579. G. Ivetic, I. Meneghin, E. Troiani, G. Molinari, J.L. Ocaña, M. Morales, J. Porro, A. Lanciotti, V. Ristori, C. Polese, J. Plaisier and A. Lausi, Fatigue in Laser Shock Peened Open-Hole Thin Aluminium Specimens, Mater. Sci. Eng. A, 2012, 534, p 573–579.
32.
go back to reference X. Nie, W. He, L. Zhou, Q. Li and X. Wang, Experiment Investigation of Laser Shock Peening on TC6 Titanium Alloy to Improve High Cycle Fatigue Performance, Mater. Sci. Eng., A, 2014, 594, p 161–167. X. Nie, W. He, L. Zhou, Q. Li and X. Wang, Experiment Investigation of Laser Shock Peening on TC6 Titanium Alloy to Improve High Cycle Fatigue Performance, Mater. Sci. Eng., A, 2014, 594, p 161–167.
33.
go back to reference M. Achintha, D. Nowell, D. Fufari, E.E. Sackett and M.R. Bache, Fatigue Behaviour of Geometric Features Subjected to Laser Shock Peening: Experiments and Modelling, Int. J. Fatigue, 2014, 62, p 171–179. M. Achintha, D. Nowell, D. Fufari, E.E. Sackett and M.R. Bache, Fatigue Behaviour of Geometric Features Subjected to Laser Shock Peening: Experiments and Modelling, Int. J. Fatigue, 2014, 62, p 171–179.
34.
go back to reference S.D. Cuellar, M.R. Hill, A.T. DeWald and J.E. Rankin, Residual Stress and Fatigue Life in Laser Shock Peened Open Hole Samples, Int. J. Fatigue, 2012, 44, p 8–13. S.D. Cuellar, M.R. Hill, A.T. DeWald and J.E. Rankin, Residual Stress and Fatigue Life in Laser Shock Peened Open Hole Samples, Int. J. Fatigue, 2012, 44, p 8–13.
35.
go back to reference J. Sun, A. Su, T. Wang, W. Chen and W. Guo, Effect of Laser Shock Processing with Post-Machining and Deep Cryogenic Treatment on Fatigue Life of GH4169 Super Alloy, Int. J. Fatigue, 2019, 119, p 261–267. J. Sun, A. Su, T. Wang, W. Chen and W. Guo, Effect of Laser Shock Processing with Post-Machining and Deep Cryogenic Treatment on Fatigue Life of GH4169 Super Alloy, Int. J. Fatigue, 2019, 119, p 261–267.
36.
go back to reference C.A. Vázquez-Jiménez, G. Gómez-Rosas, C. Rubio-González and S. Hereñú, Effect of Laser Shock Processing on Fatigue Life of 2205 Duplex Stainless Steel Notched Specimens, Opt. Laser Technol., 2017, 907, p 308–315. C.A. Vázquez-Jiménez, G. Gómez-Rosas, C. Rubio-González and S. Hereñú, Effect of Laser Shock Processing on Fatigue Life of 2205 Duplex Stainless Steel Notched Specimens, Opt. Laser Technol., 2017, 907, p 308–315.
37.
go back to reference J.M. Yang, Y.C. Her, N. Han and A. Clauer, Laser Shock Peening on Fatigue Behavior of 2024–T3 Al Alloy with Fastener Holes and Stopholes, Mater. Sci. Eng., A, 2001, 298(1–2), p 296–299. J.M. Yang, Y.C. Her, N. Han and A. Clauer, Laser Shock Peening on Fatigue Behavior of 2024–T3 Al Alloy with Fastener Holes and Stopholes, Mater. Sci. Eng., A, 2001, 298(1–2), p 296–299.
38.
go back to reference U. Zerbst, M. Vormwald, R. Pippan, H.P. Gänser, C. Sarrazin-Baudoux and M. Madia, About the Fatigue Crack Propagation Threshold of Metals as a Design Criterion - A Review, Eng. Fract. Mech., 2016, 153, p 190–243. U. Zerbst, M. Vormwald, R. Pippan, H.P. Gänser, C. Sarrazin-Baudoux and M. Madia, About the Fatigue Crack Propagation Threshold of Metals as a Design Criterion - A Review, Eng. Fract. Mech., 2016, 153, p 190–243.
39.
go back to reference M.B. Prime, Cross-sectional Mapping of Residual Stresses by Measuring the Surface Contour After a Cut, J. Eng. Mater. Technol., 2001, 123, p 162–168. M.B. Prime, Cross-sectional Mapping of Residual Stresses by Measuring the Surface Contour After a Cut, J. Eng. Mater. Technol., 2001, 123, p 162–168.
40.
go back to reference N. Hfaiedh, P. Peyre, H. Song, I. Popa, V. Ji and V. Vignal, Finite Element Analysis of Laser Shock Peening of 2050–T8 Aluminum Alloy, Int. J. Fatigue, 2015, 70, p 480–489. N. Hfaiedh, P. Peyre, H. Song, I. Popa, V. Ji and V. Vignal, Finite Element Analysis of Laser Shock Peening of 2050–T8 Aluminum Alloy, Int. J. Fatigue, 2015, 70, p 480–489.
41.
go back to reference P. Peyre, I. Chaieb and C. Braham, FEM Calculations of Residual Stresses Induced by Laser Shock Processing in Stainless Steels, Model. Simul. Mater. Sci. Eng., 2007, 15, p 205–221. P. Peyre, I. Chaieb and C. Braham, FEM Calculations of Residual Stresses Induced by Laser Shock Processing in Stainless Steels, Model. Simul. Mater. Sci. Eng., 2007, 15, p 205–221.
42.
go back to reference C.A. Correa, J.A. Gil-Santos, D.M. Porro and J.L. Ocaña, Eigenstrain Simulation of Residul Stresses Induced by Laser Shock Processing in a Ti6Al4V Hip Replacement, Mater. Design, 2015, 79, p 106–114. C.A. Correa, J.A. Gil-Santos, D.M. Porro and J.L. Ocaña, Eigenstrain Simulation of Residul Stresses Induced by Laser Shock Processing in a Ti6Al4V Hip Replacement, Mater. Design, 2015, 79, p 106–114.
43.
go back to reference M.D. Goel, A Numerical study of ogive shape projectile impact on multilayered, Advances in Structural Engineering mechanics. V. Matsagar Ed., Nueva Delhi, Springer, 2015, p 247–257 M.D. Goel, A Numerical study of ogive shape projectile impact on multilayered, Advances in Structural Engineering mechanics. V. Matsagar Ed., Nueva Delhi, Springer, 2015, p 247–257
44.
go back to reference M. Asif, K.A. Shrikrishana and P. Sathiya, Finite Element Modelling and Characterization of Friction Welding on UNS S31803 Duplex Stainless Steel Joints, Eng. Sci. Technol., an Int. J., 2015, 18, p 704–712. M. Asif, K.A. Shrikrishana and P. Sathiya, Finite Element Modelling and Characterization of Friction Welding on UNS S31803 Duplex Stainless Steel Joints, Eng. Sci. Technol., an Int. J., 2015, 18, p 704–712.
45.
go back to reference I. Peñuelas, C. Rodríguez, T.E. García and F.J. Belzunce, Numerical Simulation of Shot Peening Process: Influence of the Constitutive Model of the Target Material, WSEAS Trans. Appl. Theor. Mech., 2015, 10, p 194–203. I. Peñuelas, C. Rodríguez, T.E. García and F.J. Belzunce, Numerical Simulation of Shot Peening Process: Influence of the Constitutive Model of the Target Material, WSEAS Trans. Appl. Theor. Mech., 2015, 10, p 194–203.
46.
go back to reference J.H. Kim, Y.J. Kim and J.S. Kim, Effects of Simulation Parameters on Residual Stresses for Laser Shock Peening Finite Element Analysis, J. Mech. Sci. Technol., 2013, 27(7), p 2025–2034. J.H. Kim, Y.J. Kim and J.S. Kim, Effects of Simulation Parameters on Residual Stresses for Laser Shock Peening Finite Element Analysis, J. Mech. Sci. Technol., 2013, 27(7), p 2025–2034.
47.
go back to reference R.D. Koyeea, S. Schmauder, U. Heisel and R. Eisseler, Numerical Modeling and Optimization of Machining Duplex Stainless Steels, Prod. Manuf. Res.: An Open Access J., 2015, 3(1), p 36–83. R.D. Koyeea, S. Schmauder, U. Heisel and R. Eisseler, Numerical Modeling and Optimization of Machining Duplex Stainless Steels, Prod. Manuf. Res.: An Open Access J., 2015, 3(1), p 36–83.
48.
go back to reference D.F. Socie, G.B. Marquis, Multiaxial Fatigue, SAE International, 2000 D.F. Socie, G.B. Marquis, Multiaxial Fatigue, SAE International, 2000
49.
go back to reference V. Granados-Alejo, C. Rubio-González, C.A. Vázquez-Jiménez, J.A. Banderas and G. Gómez-Rosas, Influence of Specimen Thickness on the Fatigue Behavior of Notched Steel Plates Subjected to Laser Shock Peening, Opt. Laser Technol., 2018, 101, p 531–544. V. Granados-Alejo, C. Rubio-González, C.A. Vázquez-Jiménez, J.A. Banderas and G. Gómez-Rosas, Influence of Specimen Thickness on the Fatigue Behavior of Notched Steel Plates Subjected to Laser Shock Peening, Opt. Laser Technol., 2018, 101, p 531–544.
50.
go back to reference K.S. Kim, X. Chen, C. Han and H.W. Lee, Estimation Methods for Fatigue Properties of Steels Under Axial and Torsional Loading, Int. J. Fatigue, 2002, 24, p 783–793. K.S. Kim, X. Chen, C. Han and H.W. Lee, Estimation Methods for Fatigue Properties of Steels Under Axial and Torsional Loading, Int. J. Fatigue, 2002, 24, p 783–793.
51.
go back to reference V.T. Troshchenko and L.A. Khamaza, Strain–life Curves of Steels and Methods for Determining the Curve Parameters, Strength Mater., 2010, 42(6), p 647–659. V.T. Troshchenko and L.A. Khamaza, Strain–life Curves of Steels and Methods for Determining the Curve Parameters, Strength Mater., 2010, 42(6), p 647–659.
52.
go back to reference Fatigue theory reference manual, FE-Safe documentation, 2002. Fatigue theory reference manual, FE-Safe documentation, 2002.
53.
go back to reference U. Zerbst and M. Madia, Fracture Mechanics Based Assessment of the Fatigue Strength: Approach for the Determination of the Initial Crack Size, Fatigue Fract Engng Mater Struct, 2015, 38, p 1066–1075. U. Zerbst and M. Madia, Fracture Mechanics Based Assessment of the Fatigue Strength: Approach for the Determination of the Initial Crack Size, Fatigue Fract Engng Mater Struct, 2015, 38, p 1066–1075.
Metadata
Title
The Laser Shock Peening Effect on Fatigue Performance of Curved Components with and Without Stress Concentrators
Authors
V. Granados-Alejo
C. Rubio-González
J. A. Banderas
S. Flores
Publication date
01-10-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 2/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06282-2

Other articles of this Issue 2/2022

Journal of Materials Engineering and Performance 2/2022 Go to the issue

Premium Partners