Skip to main content
Top
Published in: Soft Computing 20/2019

01-11-2018 | Methodologies and Application

The maximum points-based supervised learning rule for spiking neural networks

Authors: Xiurui Xie, Guisong Liu, Qing Cai, Hong Qu, Malu Zhang

Published in: Soft Computing | Issue 20/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As the third generation of neural networks, Spiking Neural Networks (SNNs) have made great success in pattern recognition fields. However, the existing training methods for SNNs are not efficient enough because of the temporal encoding mechanism. To improve the training efficiency of the supervised SNNs and keep the useful temporal information, the Maximum Points-based Supervised Learning Rule (MPSLR) is proposed in this paper. Three training strategies are adopted in MPSLR to improve the learning performance. Firstly, only the target points and maximum voltage points are trained. By theoretical analyses, we find that the maximum points are effective for the voltage controlling of the non-target points, and the analytic solutions for all maximum voltage points are parallelly obtainable. This improves the training efficiency significantly by avoiding the successive voltage detecting. Secondly, the weight modification for each presynaptic neuron is normalized by a rate function to resizing the output scale. Thirdly, the spiking rates accumulated in a time window are utilized to involve more useful knowledge. Extensive experiments on both synthetic data and four real-world UCI datasets demonstrate that our algorithm achieves significantly better performance and higher efficiency than traditional methods in various situations, including different multi-spike rates and time lengths. Besides, it is more stable to hyper-parameter variations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Abualigah LM, Khader AT (2017) Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering. J Supercomput 73(11):4773–4795CrossRef Abualigah LM, Khader AT (2017) Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering. J Supercomput 73(11):4773–4795CrossRef
go back to reference Abualigah LM, Khader AT, Al-Betar MA (2016) Unsupervised feature selection technique based on genetic algorithm for improving the Text Clustering. In: 2016 7th international conference on computer science and information technology (CSIT). IEEE, pp 1–6 Abualigah LM, Khader AT, Al-Betar MA (2016) Unsupervised feature selection technique based on genetic algorithm for improving the Text Clustering. In: 2016 7th international conference on computer science and information technology (CSIT). IEEE, pp 1–6
go back to reference Alomari OA, Khader AT, Al-Betar MA, Abualigah LM (2017) Gene selection for cancer classification by combining minimum redundancy maximum relevancy and bat-inspired algorithm. Int J Data Min Bioinform 19(1):32–51CrossRef Alomari OA, Khader AT, Al-Betar MA, Abualigah LM (2017) Gene selection for cancer classification by combining minimum redundancy maximum relevancy and bat-inspired algorithm. Int J Data Min Bioinform 19(1):32–51CrossRef
go back to reference Bansal Shonak (2014) Optimal Golomb ruler sequence generation for FWM crosstalk elimination: soft computing versus conventional approaches. Appl Soft Comput 22:443–457MathSciNetCrossRef Bansal Shonak (2014) Optimal Golomb ruler sequence generation for FWM crosstalk elimination: soft computing versus conventional approaches. Appl Soft Comput 22:443–457MathSciNetCrossRef
go back to reference Bansal Shonak, Gupta Neena, Singh Arun Kumar (2017a) Nature-inspired metaheuristic algorithms to find near-OGR sequences for WDM channel allocation and their performance comparison. Open Math 15(1):520–547MathSciNetMATHCrossRef Bansal Shonak, Gupta Neena, Singh Arun Kumar (2017a) Nature-inspired metaheuristic algorithms to find near-OGR sequences for WDM channel allocation and their performance comparison. Open Math 15(1):520–547MathSciNetMATHCrossRef
go back to reference Bansal Shonak, Singh Arun Kumar, Gupta Neena (2017b) Optimal Golomb Ruler sequences generation for optical WDM systems: a novel parallel hybrid multi-objective Bat algorithm. J Inst Eng (India) Ser B 98(1):43–64CrossRef Bansal Shonak, Singh Arun Kumar, Gupta Neena (2017b) Optimal Golomb Ruler sequences generation for optical WDM systems: a novel parallel hybrid multi-objective Bat algorithm. J Inst Eng (India) Ser B 98(1):43–64CrossRef
go back to reference Benchenane K, Peyrache A, Khamassi M et al (2010) Coherent theta oscillations and reorganization of spike timing in the hippocampal-prefrontal network upon learning. Neuron 66(6):921–936CrossRef Benchenane K, Peyrache A, Khamassi M et al (2010) Coherent theta oscillations and reorganization of spike timing in the hippocampal-prefrontal network upon learning. Neuron 66(6):921–936CrossRef
go back to reference Bohte SM, Kok JN, La Poutre H (2002) Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48(1):17–37MATHCrossRef Bohte SM, Kok JN, La Poutre H (2002) Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48(1):17–37MATHCrossRef
go back to reference Burbank KS (2015) Mirrored STDP implements autoencoder learning in a network of spiking neurons. PLoS Comput Biol 11(12):e1004566CrossRef Burbank KS (2015) Mirrored STDP implements autoencoder learning in a network of spiking neurons. PLoS Comput Biol 11(12):e1004566CrossRef
go back to reference Costa AA, Amon MJ et al (2018) Fractal analyses of networks of integrate-and-fire stochastic spiking neurons. In: International workshop on complex networks, pp 161–171 Costa AA, Amon MJ et al (2018) Fractal analyses of networks of integrate-and-fire stochastic spiking neurons. In: International workshop on complex networks, pp 161–171
go back to reference De Berredo RC (2005) A review of spiking neuron models and applications. M. Sc. Dissertation, University of Minas Gerais De Berredo RC (2005) A review of spiking neuron models and applications. M. Sc. Dissertation, University of Minas Gerais
go back to reference Dora S, Sundaram S, Sundararajan N (2015) A two stage learning algorithm for a Growing-Pruning Spiking Neural Network for pattern classification problems. In: 2015 international joint conference on neural networks (IJCNN), pp 1–7 Dora S, Sundaram S, Sundararajan N (2015) A two stage learning algorithm for a Growing-Pruning Spiking Neural Network for pattern classification problems. In: 2015 international joint conference on neural networks (IJCNN), pp 1–7
go back to reference Dora S, Subramanian K, Suresh S et al (2016) Development of a self-regulating evolving spiking neural network for classification problem. Neurocomputing 171:1216–1229CrossRef Dora S, Subramanian K, Suresh S et al (2016) Development of a self-regulating evolving spiking neural network for classification problem. Neurocomputing 171:1216–1229CrossRef
go back to reference Florian RV (2012) The chronotron: a neuron that learns to fire temporally precise spike patterns. Plos ONE 7(8):e40233CrossRef Florian RV (2012) The chronotron: a neuron that learns to fire temporally precise spike patterns. Plos ONE 7(8):e40233CrossRef
go back to reference Gerstner W, Kistler WM (2002) Spiking neural models: single neurons, populations, plasticity. Cambridge University Press, CambridgeMATHCrossRef Gerstner W, Kistler WM (2002) Spiking neural models: single neurons, populations, plasticity. Cambridge University Press, CambridgeMATHCrossRef
go back to reference Ghosh-Dastidar S, Adeli H (2009) A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection. Neural Netw 22(10):1419–1431CrossRef Ghosh-Dastidar S, Adeli H (2009) A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection. Neural Netw 22(10):1419–1431CrossRef
go back to reference Gütig R, Sompolinsky H (2006) The tempotron: a neuron that learns spike timing-based decisions. Nat Neurosci 9(3):420–428CrossRef Gütig R, Sompolinsky H (2006) The tempotron: a neuron that learns spike timing-based decisions. Nat Neurosci 9(3):420–428CrossRef
go back to reference Gütig R, Aharonov R, Rotter S (2003) Learning input correlations through nonlinear temporally asymmetric Hebbian plasticity. J Neurosci 23(9):3697–3714CrossRef Gütig R, Aharonov R, Rotter S (2003) Learning input correlations through nonlinear temporally asymmetric Hebbian plasticity. J Neurosci 23(9):3697–3714CrossRef
go back to reference Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160(1):106–154CrossRef Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160(1):106–154CrossRef
go back to reference Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195(1):215–243CrossRef Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195(1):215–243CrossRef
go back to reference Kasabov NK, Doborjeh MG, Doborjeh ZG (2017) Mapping, learning, visualization, classification, and understanding of fMRI Data in the NeuCube evolving spatiotemporal data machine of spiking neural networks. IEEE Trans Neural Netw Learn Syst 28(4):887–899CrossRef Kasabov NK, Doborjeh MG, Doborjeh ZG (2017) Mapping, learning, visualization, classification, and understanding of fMRI Data in the NeuCube evolving spatiotemporal data machine of spiking neural networks. IEEE Trans Neural Netw Learn Syst 28(4):887–899CrossRef
go back to reference Liu G, Qiu Z, Qu H (2015a) Computing k shortest paths from a source node to each other node. Soft Comput 19(8):2391–2402CrossRef Liu G, Qiu Z, Qu H (2015a) Computing k shortest paths from a source node to each other node. Soft Comput 19(8):2391–2402CrossRef
go back to reference Liu G, Qiu Z, Qu H (2015b) Computing k shortest paths using modified pulse-coupled neural network. Neurocomputing 149:1162–1176CrossRef Liu G, Qiu Z, Qu H (2015b) Computing k shortest paths using modified pulse-coupled neural network. Neurocomputing 149:1162–1176CrossRef
go back to reference Markowska-Kaczmar U, Koldowski M (2015) Spiking neural network vs multilayer perceptron: who is the winner in the racing car computer game. Soft Comput 19(12):3465–3478CrossRef Markowska-Kaczmar U, Koldowski M (2015) Spiking neural network vs multilayer perceptron: who is the winner in the racing car computer game. Soft Comput 19(12):3465–3478CrossRef
go back to reference Masquelier T, Guyonneau R, Thorpe SJ (2009) Competitive STDP-based spike pattern learning. Neural Comput 21(5):1259–1276MATHCrossRef Masquelier T, Guyonneau R, Thorpe SJ (2009) Competitive STDP-based spike pattern learning. Neural Comput 21(5):1259–1276MATHCrossRef
go back to reference McKennoch S, Liu D, Bushnell LG (2006) Fast modifications of the spikeprop algorithm. In: International joint conference on neural networks, IJCNN’06, pp 3970–3977 McKennoch S, Liu D, Bushnell LG (2006) Fast modifications of the spikeprop algorithm. In: International joint conference on neural networks, IJCNN’06, pp 3970–3977
go back to reference Mehta MR, Lee AK, Wilson MA (2002) Role of experience and oscillations in transforming a rate code into a temporal code. Nature 417(6890):741–746CrossRef Mehta MR, Lee AK, Wilson MA (2002) Role of experience and oscillations in transforming a rate code into a temporal code. Nature 417(6890):741–746CrossRef
go back to reference Mohemmed A, Schliebs S, Matsuda S (2012) Span: spike pattern association neuron for learning spatio-temporal spike patterns. Int J Neural Syst 22(04):1250012CrossRef Mohemmed A, Schliebs S, Matsuda S (2012) Span: spike pattern association neuron for learning spatio-temporal spike patterns. Int J Neural Syst 22(04):1250012CrossRef
go back to reference Morro A, Canals V, Oliver A et al (2017) A stochastic spiking neural network for virtual screening. IEEE Trans Neural Netw Learn Syst 29:1371–1375CrossRef Morro A, Canals V, Oliver A et al (2017) A stochastic spiking neural network for virtual screening. IEEE Trans Neural Netw Learn Syst 29:1371–1375CrossRef
go back to reference Motieghader Habib, Najafi Ali, Sadeghi Balal, Masoudi-Nejad Ali (2017) A hybrid gene selection algorithm for microarray cancer classification using genetic algorithm and learning automata. J Theor Appl Inf Technol 95(12):246–254 Motieghader Habib, Najafi Ali, Sadeghi Balal, Masoudi-Nejad Ali (2017) A hybrid gene selection algorithm for microarray cancer classification using genetic algorithm and learning automata. J Theor Appl Inf Technol 95(12):246–254
go back to reference Nicola W, Clopath C (2017) Supervised learning in spiking neural networks with FORCE training. Nat Commun 8(1):2208CrossRef Nicola W, Clopath C (2017) Supervised learning in spiking neural networks with FORCE training. Nat Commun 8(1):2208CrossRef
go back to reference Panda P, Roy K (2016) Unsupervised regenerative learning of hierarchical features in spiking deep networks for object recognition. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp 299–306 Panda P, Roy K (2016) Unsupervised regenerative learning of hierarchical features in spiking deep networks for object recognition. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp 299–306
go back to reference Ponulak F, Kasiński A (2010a) Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting. Neural Comput 22(2):467–510MathSciNetMATHCrossRef Ponulak F, Kasiński A (2010a) Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting. Neural Comput 22(2):467–510MathSciNetMATHCrossRef
go back to reference Ponulak F, Kasinski A (2010b) Introduction to spiking neural networks: information processing, learning and applications. Acta Neurobiol Exp 71(4):409–433MATH Ponulak F, Kasinski A (2010b) Introduction to spiking neural networks: information processing, learning and applications. Acta Neurobiol Exp 71(4):409–433MATH
go back to reference Qu H, Xie X, Liu Y et al (2015) Improved perception-based spiking neuron learning rule for real-time user authentication. Neurocomputing 151:310–318CrossRef Qu H, Xie X, Liu Y et al (2015) Improved perception-based spiking neuron learning rule for real-time user authentication. Neurocomputing 151:310–318CrossRef
go back to reference Schreiber S, Fellous JM, Whitmer D (2003) A new correlation-based measure of spike timing reliability. Neurocomputing 52:925–931CrossRef Schreiber S, Fellous JM, Whitmer D (2003) A new correlation-based measure of spike timing reliability. Neurocomputing 52:925–931CrossRef
go back to reference Snippe HP (1996) Parameter extraction from population codes: a critical assessment. Neural Comput 8(3):511–529CrossRef Snippe HP (1996) Parameter extraction from population codes: a critical assessment. Neural Comput 8(3):511–529CrossRef
go back to reference Taherkhani A, Belatreche A, Li Y (2015) DL-ReSuMe: a delay learning-based remote supervised method for spiking neurons. IEEE Trans Neural Netw Learn Syst 26(12):3137–3149MathSciNetCrossRef Taherkhani A, Belatreche A, Li Y (2015) DL-ReSuMe: a delay learning-based remote supervised method for spiking neurons. IEEE Trans Neural Netw Learn Syst 26(12):3137–3149MathSciNetCrossRef
go back to reference Thorpe SJ, Imbert M (1989) Biological constraints on connectionist modelling. In: Pfeifer R, Schreter, Fogelman-Soulie F, Steels L (eds) Connectionism in perspective. NorthHolland/Elsevier Science, Amsterdam, pp 63–92 Thorpe SJ, Imbert M (1989) Biological constraints on connectionist modelling. In: Pfeifer R, Schreter, Fogelman-Soulie F, Steels L (eds) Connectionism in perspective. NorthHolland/Elsevier Science, Amsterdam, pp 63–92
go back to reference VanRullen R, Guyonneau R, Thorpe SJ (2005) Spike times make sense. Trends Neurosci 28(1):1–4CrossRef VanRullen R, Guyonneau R, Thorpe SJ (2005) Spike times make sense. Trends Neurosci 28(1):1–4CrossRef
go back to reference Victor JD, Purpura KP (1997) Metric-space analysis of spike trains: theory, algorithms and application. Netw Comput Neural Syst 8(2):127–164MATHCrossRef Victor JD, Purpura KP (1997) Metric-space analysis of spike trains: theory, algorithms and application. Netw Comput Neural Syst 8(2):127–164MATHCrossRef
go back to reference Wade JJ, McDaid LJ, Santos JA (2010) SWAT: a spiking neural network training algorithm for classification problems. IEEE Trans Neural Netw 21(11):1817–1830CrossRef Wade JJ, McDaid LJ, Santos JA (2010) SWAT: a spiking neural network training algorithm for classification problems. IEEE Trans Neural Netw 21(11):1817–1830CrossRef
go back to reference Wu QX, McGinnity TM, Maguire LP et al (2006) Learning under weight constraints in networks of temporal encoding spiking neurons. Neurocomputing 69(16):1912–1922CrossRef Wu QX, McGinnity TM, Maguire LP et al (2006) Learning under weight constraints in networks of temporal encoding spiking neurons. Neurocomputing 69(16):1912–1922CrossRef
go back to reference Xie X, Qu H, Liu G (2016) An efficient supervised training algorithm for multilayer spiking neural networks. PloS ONE 11(4):e0150329CrossRef Xie X, Qu H, Liu G (2016) An efficient supervised training algorithm for multilayer spiking neural networks. PloS ONE 11(4):e0150329CrossRef
go back to reference Xie X, Qu H, Liu G (2017) Efficient training of supervised spiking neural networks via the normalized perceptron based learning rule. Neurocomputing 241:152–163CrossRef Xie X, Qu H, Liu G (2017) Efficient training of supervised spiking neural networks via the normalized perceptron based learning rule. Neurocomputing 241:152–163CrossRef
go back to reference Xie X, Qu H, Yi Z (2017) Efficient training of supervised spiking neural network via accurate synaptic-efficiency adjustment method. IEEE Trans Neural Netw Learn Syst 28(6):1411–1424CrossRef Xie X, Qu H, Yi Z (2017) Efficient training of supervised spiking neural network via accurate synaptic-efficiency adjustment method. IEEE Trans Neural Netw Learn Syst 28(6):1411–1424CrossRef
go back to reference Xu Y, Zeng X, Zhong S (2013a) A new supervised learning algorithm for spiking neurons. Neural Comput 25(6):1472–1511MathSciNetCrossRef Xu Y, Zeng X, Zhong S (2013a) A new supervised learning algorithm for spiking neurons. Neural Comput 25(6):1472–1511MathSciNetCrossRef
go back to reference Xu Y, Zeng X, Han L (2013b) A supervised multi-spike learning algorithm based on gradient descent for spiking neural networks. Neural Netw 43:99–113MATHCrossRef Xu Y, Zeng X, Han L (2013b) A supervised multi-spike learning algorithm based on gradient descent for spiking neural networks. Neural Netw 43:99–113MATHCrossRef
go back to reference Yu Q, Yan R, Tang H (2016) A spiking neural network system for robust sequence recognition. IEEE Trans Neural Netw Learn Syst 27(3):621–635MathSciNetCrossRef Yu Q, Yan R, Tang H (2016) A spiking neural network system for robust sequence recognition. IEEE Trans Neural Netw Learn Syst 27(3):621–635MathSciNetCrossRef
Metadata
Title
The maximum points-based supervised learning rule for spiking neural networks
Authors
Xiurui Xie
Guisong Liu
Qing Cai
Hong Qu
Malu Zhang
Publication date
01-11-2018
Publisher
Springer Berlin Heidelberg
Published in
Soft Computing / Issue 20/2019
Print ISSN: 1432-7643
Electronic ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-018-3576-0

Other articles of this Issue 20/2019

Soft Computing 20/2019 Go to the issue

Premium Partner