Skip to main content
Top

2011 | OriginalPaper | Chapter

2. The Principles of STEM Imaging

Author : Peter D. Nellist

Published in: Scanning Transmission Electron Microscopy

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The principles underlying imaging in the scanning transmission electron microscope are described. Particular focus is made on bright-field and annular dark-field imaging modes to illustrate the difference between coherent and incoherent imaging. In the case of annular dark-field imaging, the effects of dynamical diffraction and thermal diffuse scattering are discussed. The extension to three-dimensional imaging by optical sectioning is included, with particular reference to resolution limits and the bounds of transfer.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference G. Ade, On the incoherent imaging in the scanning transmission electron microscope. Optik 49, 113–116 (1977) G. Ade, On the incoherent imaging in the scanning transmission electron microscope. Optik 49, 113–116 (1977)
go back to reference L.J. Allen, S.D. Findlay, M.P. Oxley, C.J. Rossouw, Lattice-resolution contrast from a focused coherent electron probe. Part I. Ultramicroscopy 96, 47–63 (2003)CrossRef L.J. Allen, S.D. Findlay, M.P. Oxley, C.J. Rossouw, Lattice-resolution contrast from a focused coherent electron probe. Part I. Ultramicroscopy 96, 47–63 (2003)CrossRef
go back to reference A. Amali, P. Rez, Theory of lattice resolution in high-angle annular dark-field images. Microsc. Microanal. 3, 28–46 (1997) A. Amali, P. Rez, Theory of lattice resolution in high-angle annular dark-field images. Microsc. Microanal. 3, 28–46 (1997)
go back to reference G. Behan, E.C. Cosgriff, A.I. Kirkland, P.D. Nellist, Three-dimensional imaging by optical sectioning in the aberration-corrected scanning transmission electron microscope. Philos. Trans. R. Soc. Lond. A 367, 3825–3844 (2009)CrossRef G. Behan, E.C. Cosgriff, A.I. Kirkland, P.D. Nellist, Three-dimensional imaging by optical sectioning in the aberration-corrected scanning transmission electron microscope. Philos. Trans. R. Soc. Lond. A 367, 3825–3844 (2009)CrossRef
go back to reference A.Y. Borisevich, A.R. Lupini, S.J. Pennycook, Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc. Natl. Acad. Sci. 103, 3044–3048 (2006)CrossRef A.Y. Borisevich, A.R. Lupini, S.J. Pennycook, Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc. Natl. Acad. Sci. 103, 3044–3048 (2006)CrossRef
go back to reference N.D. Browning, M.F. Chisholm, S.J. Pennycook, Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366, 143–146 (1993)CrossRef N.D. Browning, M.F. Chisholm, S.J. Pennycook, Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366, 143–146 (1993)CrossRef
go back to reference E.C. Cosgriff, A.J. D’Alfonso, L.J. Allen, S.D. Findlay, A.I. Kirkland, P.D. Nellist, Three dimensional imaging in double aberration-corrected scanning confocal electron microscopy. Part I: Elastic scattering. Ultramicroscopy 108, 1558–1566 (2008)CrossRef E.C. Cosgriff, A.J. D’Alfonso, L.J. Allen, S.D. Findlay, A.I. Kirkland, P.D. Nellist, Three dimensional imaging in double aberration-corrected scanning confocal electron microscopy. Part I: Elastic scattering. Ultramicroscopy 108, 1558–1566 (2008)CrossRef
go back to reference J.M. Cowley, Image contrast in a transmission scanning electron microscope. Appl. Phys. Lett. 15, 58–59 (1969)CrossRef J.M. Cowley, Image contrast in a transmission scanning electron microscope. Appl. Phys. Lett. 15, 58–59 (1969)CrossRef
go back to reference J.M. Cowley, Coherent interference in convergent-beam electron diffraction & shadow imaging. Ultramicroscopy 4, 435–450 (1979)CrossRef J.M. Cowley, Coherent interference in convergent-beam electron diffraction & shadow imaging. Ultramicroscopy 4, 435–450 (1979)CrossRef
go back to reference J.M. Cowley, Coherent interference effects in SIEM and CBED. Ultramicroscopy 7, 19–26 (1981)CrossRef J.M. Cowley, Coherent interference effects in SIEM and CBED. Ultramicroscopy 7, 19–26 (1981)CrossRef
go back to reference A.V. Crewe, The physics of the high-resolution STEM. Rep. Progr. Phys. 43, 621–639 (1980)CrossRef A.V. Crewe, The physics of the high-resolution STEM. Rep. Progr. Phys. 43, 621–639 (1980)CrossRef
go back to reference A.V. Crewe, D.N. Eggenberger, J. Wall, L.M. Welter, Electron gun using a field emission source. Rev. Sci. Instrum. 39, 576–583 (1968)CrossRef A.V. Crewe, D.N. Eggenberger, J. Wall, L.M. Welter, Electron gun using a field emission source. Rev. Sci. Instrum. 39, 576–583 (1968)CrossRef
go back to reference A.V. Crewe, J. Wall, A scanning microscope with 5 Å resolution. J. Mol. Biol. 48, 375–393 (1970)CrossRef A.V. Crewe, J. Wall, A scanning microscope with 5 Å resolution. J. Mol. Biol. 48, 375–393 (1970)CrossRef
go back to reference A.J. D’Alfonso, E.C. Cosgriff, S.D. Findlay, G. Behan, A.I. Kirkland, P.D. Nellist, L.J. Allen, Three dimensional imaging in double aberration-corrected scanning confocal electron microscopy. Part II: Inelastic scattering. Ultramicroscopy 108, 1567–1578 (2008)CrossRef A.J. D’Alfonso, E.C. Cosgriff, S.D. Findlay, G. Behan, A.I. Kirkland, P.D. Nellist, L.J. Allen, Three dimensional imaging in double aberration-corrected scanning confocal electron microscopy. Part II: Inelastic scattering. Ultramicroscopy 108, 1567–1578 (2008)CrossRef
go back to reference N. de Jonge, R. Sougrat, B.M. Northan, S.J. Pennycook, Three-dimensional scanning transmission electron microscopy of biological specimens. Microsc. Microanal. 16, 54–63 (2010)CrossRef N. de Jonge, R. Sougrat, B.M. Northan, S.J. Pennycook, Three-dimensional scanning transmission electron microscopy of biological specimens. Microsc. Microanal. 16, 54–63 (2010)CrossRef
go back to reference N.H. Dekkers, H. de Lang, Differential phase contrast in a STEM. Optik 41, 452–456 (1974) N.H. Dekkers, H. de Lang, Differential phase contrast in a STEM. Optik 41, 452–456 (1974)
go back to reference C. Dinges, A. Berger, H. Rose, Simulation of TEM images considering phonon and electron excitations. Ultramicroscopy 60, 49–70 (1995)CrossRef C. Dinges, A. Berger, H. Rose, Simulation of TEM images considering phonon and electron excitations. Ultramicroscopy 60, 49–70 (1995)CrossRef
go back to reference A.M. Donald, A.J. Craven, A study of grain boundary segregation in Cu–Bi alloys using STEM. Philos. Mag. A 39, 1–11 (1979)CrossRef A.M. Donald, A.J. Craven, A study of grain boundary segregation in Cu–Bi alloys using STEM. Philos. Mag. A 39, 1–11 (1979)CrossRef
go back to reference C. Dwyer, J. Etheridge, Scattering of Å-scale electron probes in silicon. Ultramicroscopy 96, 343–360 (2003)CrossRef C. Dwyer, J. Etheridge, Scattering of Å-scale electron probes in silicon. Ultramicroscopy 96, 343–360 (2003)CrossRef
go back to reference H.M.L. Faulkner, J.M. Rodenburg, Moveable aperture lensless transmission microscopy: A novel phase retrieval algorithm. Phys. Rev. Lett. 93, 023903 (2004)CrossRef H.M.L. Faulkner, J.M. Rodenburg, Moveable aperture lensless transmission microscopy: A novel phase retrieval algorithm. Phys. Rev. Lett. 93, 023903 (2004)CrossRef
go back to reference S.D. Findlay, L.J. Allen, M.P. Oxley, C.J. Rossouw, Lattice-resolution contrast from a focused coherent electron probe. Part II. Ultramicroscopy 96, 65–81 (2003)CrossRef S.D. Findlay, L.J. Allen, M.P. Oxley, C.J. Rossouw, Lattice-resolution contrast from a focused coherent electron probe. Part II. Ultramicroscopy 96, 65–81 (2003)CrossRef
go back to reference B.R. Frieden, Optical transfer of the three-dimensional object. J. Opt. Soc. Am. 57, 36–41 (1967) B.R. Frieden, Optical transfer of the three-dimensional object. J. Opt. Soc. Am. 57, 36–41 (1967)
go back to reference S.J. Haigh, H. Sawada, A.I. Kirkland, Atomic structure imaging beyond conventional resolution limits in the transmission electron microscope. Phys. Rev. Lett. 103, 126101 (2009)CrossRef S.J. Haigh, H. Sawada, A.I. Kirkland, Atomic structure imaging beyond conventional resolution limits in the transmission electron microscope. Phys. Rev. Lett. 103, 126101 (2009)CrossRef
go back to reference P. Hartel, H. Rose, C. Dinges, Conditions and reasons for incoherent imaging in STEM. Ultramicroscopy 63, 93–114 (1996)CrossRef P. Hartel, H. Rose, C. Dinges, Conditions and reasons for incoherent imaging in STEM. Ultramicroscopy 63, 93–114 (1996)CrossRef
go back to reference A. Howie, Image contrast and localised signal selection techniques. J. Microsc. 117, 11–23 (1979)CrossRef A. Howie, Image contrast and localised signal selection techniques. J. Microsc. 117, 11–23 (1979)CrossRef
go back to reference C.J. Humphreys, E.G. Bithell, in Electron Diffraction Techniques, vol. 1, ed. by J.M. Cowley (OUP, New York, NY, 1992), pp. 75–151 C.J. Humphreys, E.G. Bithell, in Electron Diffraction Techniques, vol. 1, ed. by J.M. Cowley (OUP, New York, NY, 1992), pp. 75–151
go back to reference D.E. Jesson, S.J. Pennycook, Incoherent imaging of thin specimens using coherently scattered electrons. Proc. R. Soc. (Lond.) Ser. A 441, 261–281 (1993)CrossRef D.E. Jesson, S.J. Pennycook, Incoherent imaging of thin specimens using coherently scattered electrons. Proc. R. Soc. (Lond.) Ser. A 441, 261–281 (1993)CrossRef
go back to reference D.E. Jesson, S.J. Pennycook, Incoherent imaging of crystals using thermally scattered electrons. Proc. Roy. Soc. (Lond.) Ser. A 449, 273–293 (1995)CrossRef D.E. Jesson, S.J. Pennycook, Incoherent imaging of crystals using thermally scattered electrons. Proc. Roy. Soc. (Lond.) Ser. A 449, 273–293 (1995)CrossRef
go back to reference E.J. Kirkland, R.F. Loane, J. Silcox, Simulation of annular dark field STEM images using a modified multislice method. Ultramicroscopy 23, 77–96 (1987)CrossRef E.J. Kirkland, R.F. Loane, J. Silcox, Simulation of annular dark field STEM images using a modified multislice method. Ultramicroscopy 23, 77–96 (1987)CrossRef
go back to reference R.F. Loane, P. Xu, J. Silcox, Thermal vibrations in convergent-beam electron diffraction. Acta Crystallogr. A 47, 267–278 (1991)CrossRef R.F. Loane, P. Xu, J. Silcox, Thermal vibrations in convergent-beam electron diffraction. Acta Crystallogr. A 47, 267–278 (1991)CrossRef
go back to reference R.F. Loane, P. Xu, J. Silcox, Incoherent imaging of zone axis crystals with ADF STEM. Ultramicroscopy 40, 121–138 (1992)CrossRef R.F. Loane, P. Xu, J. Silcox, Incoherent imaging of zone axis crystals with ADF STEM. Ultramicroscopy 40, 121–138 (1992)CrossRef
go back to reference K. Mitsuishi, M. Takeguchi, H. Yasuda, K. Furuya, New scheme for calculation of annular dark-field STEM image including both elastically diffracted and TDS wave. J. Electron Microsc. 50, 157–162 (2001)CrossRef K. Mitsuishi, M. Takeguchi, H. Yasuda, K. Furuya, New scheme for calculation of annular dark-field STEM image including both elastically diffracted and TDS wave. J. Electron Microsc. 50, 157–162 (2001)CrossRef
go back to reference D.A. Muller, B. Edwards, E.J. Kirkland, J. Silcox, Simulation of thermal diffuse scattering including a detailed phonon dispersion curve. Ultramicroscopy 86, 371–380 (2001)CrossRef D.A. Muller, B. Edwards, E.J. Kirkland, J. Silcox, Simulation of thermal diffuse scattering including a detailed phonon dispersion curve. Ultramicroscopy 86, 371–380 (2001)CrossRef
go back to reference P.D. Nellist, G. Behan, A.I. Kirkland, C.J.D. Hetherington, Confocal operation of a transmission electron microscope with two aberration correctors. Appl. Phys. Lett. 89, 124105 (2006)CrossRef P.D. Nellist, G. Behan, A.I. Kirkland, C.J.D. Hetherington, Confocal operation of a transmission electron microscope with two aberration correctors. Appl. Phys. Lett. 89, 124105 (2006)CrossRef
go back to reference P.D. Nellist, B.C. McCallum, J.M. Rodenburg, Resolution beyond the ‘information limit’ in transmission electron microscopy. Nature 374, 630–632 (1995)CrossRef P.D. Nellist, B.C. McCallum, J.M. Rodenburg, Resolution beyond the ‘information limit’ in transmission electron microscopy. Nature 374, 630–632 (1995)CrossRef
go back to reference P.D. Nellist, S.J. Pennycook, Accurate structure determination from image reconstruction in ADF STEM. J. Microsc. 190, 159–170 (1998)CrossRef P.D. Nellist, S.J. Pennycook, Accurate structure determination from image reconstruction in ADF STEM. J. Microsc. 190, 159–170 (1998)CrossRef
go back to reference P.D. Nellist, S.J. Pennycook, Subangstrom resolution by underfocussed incoherent transmission electron microscopy. Phys. Rev. Lett. 81, 4156–4159 (1998)CrossRef P.D. Nellist, S.J. Pennycook, Subangstrom resolution by underfocussed incoherent transmission electron microscopy. Phys. Rev. Lett. 81, 4156–4159 (1998)CrossRef
go back to reference P.D. Nellist, S.J. Pennycook, Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy 78, 111–124 (1999)CrossRef P.D. Nellist, S.J. Pennycook, Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy 78, 111–124 (1999)CrossRef
go back to reference P.D. Nellist, S.J. Pennycook, The principles and interpretation of annular dark-field Z-contrast imaging. Adv. Imag. Electron Phys. 113, 148–203 (2000) P.D. Nellist, S.J. Pennycook, The principles and interpretation of annular dark-field Z-contrast imaging. Adv. Imag. Electron Phys. 113, 148–203 (2000)
go back to reference P.D. Nellist, J.M. Rodenburg, Beyond the conventional information limit: the relevant coherence function. Ultramicroscopy 54, 61–74 (1994)CrossRef P.D. Nellist, J.M. Rodenburg, Beyond the conventional information limit: the relevant coherence function. Ultramicroscopy 54, 61–74 (1994)CrossRef
go back to reference S.J. Pennycook, Z-contrast STEM for materials science. Ultramicroscopy 30, 58–69 (1989)CrossRef S.J. Pennycook, Z-contrast STEM for materials science. Ultramicroscopy 30, 58–69 (1989)CrossRef
go back to reference S.J. Pennycook, D.E. Jesson, High-resolution incoherent imaging of crystals. Phys. Rev. Lett. 64, 938–941 (1990)CrossRef S.J. Pennycook, D.E. Jesson, High-resolution incoherent imaging of crystals. Phys. Rev. Lett. 64, 938–941 (1990)CrossRef
go back to reference D.D. Perovic, C.J. Rossouw, A. Howie, Imaging elastic strain in high-angle annular dark-field scanning transmission electron microscopy. Ultramicroscopy 52, 353–359 (1993)CrossRef D.D. Perovic, C.J. Rossouw, A. Howie, Imaging elastic strain in high-angle annular dark-field scanning transmission electron microscopy. Ultramicroscopy 52, 353–359 (1993)CrossRef
go back to reference Lord Rayleigh, On the theory of optical images with special reference to the microscope. Philos. Mag. 42(5), 167–195 (1896) Lord Rayleigh, On the theory of optical images with special reference to the microscope. Philos. Mag. 42(5), 167–195 (1896)
go back to reference J.M. Rodenburg, R.H.T. Bates, The theory of super-resolution electron microscopy via Wigner-distribution deconvolution. Philos. Trans. R. Soc. Lond. A 339, 521–553 (1992)CrossRef J.M. Rodenburg, R.H.T. Bates, The theory of super-resolution electron microscopy via Wigner-distribution deconvolution. Philos. Trans. R. Soc. Lond. A 339, 521–553 (1992)CrossRef
go back to reference H. Rose, Phase contrast in scanning transmission electron microscopy. Optik 39, 416–436 (1974) H. Rose, Phase contrast in scanning transmission electron microscopy. Optik 39, 416–436 (1974)
go back to reference J.C.H. Spence, Experimental High-Resolution Electron Microscopy (OUP, New York, NY, 1988) J.C.H. Spence, Experimental High-Resolution Electron Microscopy (OUP, New York, NY, 1988)
go back to reference J.C.H. Spence, Convergent-beam nanodiffraction, in-line holography and coherent shadow imaging. Optik 92, 57–68 (1992) J.C.H. Spence, Convergent-beam nanodiffraction, in-line holography and coherent shadow imaging. Optik 92, 57–68 (1992)
go back to reference J.C.H. Spence, J.M. Cowley, Lattice imaging in STEM. Optik 50, 129–142 (1978) J.C.H. Spence, J.M. Cowley, Lattice imaging in STEM. Optik 50, 129–142 (1978)
go back to reference M.M.J. Treacy, J.M. Gibson, Atomic contrast transfer in annular dark-field images. J. Microsc. 180, 2–11 (1995)CrossRef M.M.J. Treacy, J.M. Gibson, Atomic contrast transfer in annular dark-field images. J. Microsc. 180, 2–11 (1995)CrossRef
go back to reference M.M.J. Treacy, A. Howie, C.J. Wilson, Z contrast imaging of platinum and palladium catalysts. Philos. Mag. A 38, 569–585 (1978)CrossRef M.M.J. Treacy, A. Howie, C.J. Wilson, Z contrast imaging of platinum and palladium catalysts. Philos. Mag. A 38, 569–585 (1978)CrossRef
go back to reference K. Van Benthem, A.R. Lupini, M. Kim, H.S. Baik, S. Doh, J.-H. Lee, M.P. Oxley, S.D. Findlay, L.J. Allen, J.T. Luck, S.J. Pennycook, Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Appl. Phys. Lett. 87, 034104 (2005)CrossRef K. Van Benthem, A.R. Lupini, M. Kim, H.S. Baik, S. Doh, J.-H. Lee, M.P. Oxley, S.D. Findlay, L.J. Allen, J.T. Luck, S.J. Pennycook, Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Appl. Phys. Lett. 87, 034104 (2005)CrossRef
go back to reference P. Wang, G. Behan, M. Takeguchi, A. Hashimoto, K. Mitsuishi, M. Shimojo, A.I. Kirkland, P.D. Nellist, Nanoscale energy-filtered scanning confocal electron microscopy using a double-aberration-corrected transmission electron microscope. Phys. Rev. Lett. 104, 200801 (2010) P. Wang, G. Behan, M. Takeguchi, A. Hashimoto, K. Mitsuishi, M. Shimojo, A.I. Kirkland, P.D. Nellist, Nanoscale energy-filtered scanning confocal electron microscopy using a double-aberration-corrected transmission electron microscope. Phys. Rev. Lett. 104, 200801 (2010)
go back to reference Z. Yu, D.A. Muller, J. Silcox, Study of strain fields at a-Si/c-Si interface. J. Appl. Phys. 95, 3362–3371 (2004)CrossRef Z. Yu, D.A. Muller, J. Silcox, Study of strain fields at a-Si/c-Si interface. J. Appl. Phys. 95, 3362–3371 (2004)CrossRef
go back to reference E. Zeitler, M.G.R. Thomson, Scanning transmission electron microscopy. Optik 31, 258–280 and 359–366 (1970) E. Zeitler, M.G.R. Thomson, Scanning transmission electron microscopy. Optik 31, 258–280 and 359–366 (1970)
Metadata
Title
The Principles of STEM Imaging
Author
Peter D. Nellist
Copyright Year
2011
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-7200-2_2