Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 6/2019

08-02-2019

The role of the calcium concentration effect on the structural and dielectric properties of mixed Ni–Zn ferrites

Authors: Mehmet Kuru, Tuğba Şaşmaz Kuru, Sadık Bağcı

Published in: Journal of Materials Science: Materials in Electronics | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The calcium substituted nickel-zinc ferrites with the formula of CaxNi0.75−xZn0.25Fe2O4 (x = 0, 0.25, 0.5 and 0.75) have been prepared by using the chemical co-precipitation method. The X-ray diffraction (XRD) analyses reveal the results that all the samples crystallize in cubic spinel structure and the lattice constants of the samples for x = 0, 0.25, 0.50 and 0.75 are found to be 8.334, 8.348, 8.380 and 8.538 Å, respectively. The crystallite size of the samples, obtained from Debye Scherrer’s equation, varies between 12 nm and 27 nm. The scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) analyses have been conducted to reveal and determine the morphology and stoichiometry of all the prepared CaxNi0.75−xZn0.25Fe2O4 ferrite samples. The SEM images show that the partical sizes for all the samples are at nano size in accordance with the XRD results and EDX results confirm the contents of the produced samples. The dielectric and impedance properties of the prepared ferrite samples have been investigated in the frequency range from 20 Hz to 10 MHz and in the temperature range from 350 to 700 K. The real and imaginary parts of dielectric constant, tan θ, AC and DC conductivity values decrease with increasing calcium content (except x = 0). Contrary to this behavior, real and imaginary parts of impedance increase with increasing calcium content. The general AC conductivity behavior of all samples is like semiconductor behavior. The conductivity mechanism of the sample with x = 0 is explained by the mechanism of correlated barrier hopping (CBH), while it has turned into overlapping large polaron tunneling (OLPT) mechanism for all other samples. From the relaxation time graphs obtained from the impedance data, activation energies of the grain and grain boundaries are obtained. The Nyquist plots are also presented in the temperature range of 350–700 K to determine the conductivity mechanism of the prepared samples and all the plots show only one semi-circle, which means that the dominant transmission comes from the grain boundaries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Smith, H.P.J. Wijn, Ferrites, Philips Research Laboratories, N. V. Philips’ Gloeilampenfabrieken, Eindhoven (1959) J. Smith, H.P.J. Wijn, Ferrites, Philips Research Laboratories, N. V. Philips’ Gloeilampenfabrieken, Eindhoven (1959)
2.
go back to reference A. Goldmann, Modern Ferrite Technology, 2nd edn. (Springer, New York, 2010) A. Goldmann, Modern Ferrite Technology, 2nd edn. (Springer, New York, 2010)
3.
go back to reference M. Hashim, A. Alimuddin, S. Kumar, B.H. Ali, H. Koo, R. Chung, J. Alloy. Compd. 511, 107–114 (2012)CrossRef M. Hashim, A. Alimuddin, S. Kumar, B.H. Ali, H. Koo, R. Chung, J. Alloy. Compd. 511, 107–114 (2012)CrossRef
4.
go back to reference A.B. Salunkhe, V.M. Khot, M.R. Phadatare, S.H. Pawar, J. Alloy. Compd. 514, 91–96 (2012)CrossRef A.B. Salunkhe, V.M. Khot, M.R. Phadatare, S.H. Pawar, J. Alloy. Compd. 514, 91–96 (2012)CrossRef
5.
6.
go back to reference T. Jahanbin, M. Hashim, K.A. Mantori, J. Magn. Magn. Mater. 322, 2684–2689 (2010)CrossRef T. Jahanbin, M. Hashim, K.A. Mantori, J. Magn. Magn. Mater. 322, 2684–2689 (2010)CrossRef
8.
go back to reference K. Praveena, K. Sadhana, S. Matteppanavar, H.-Lin Liu, J. Magn. Magn. Mater. 423, 343–352 (2017)CrossRef K. Praveena, K. Sadhana, S. Matteppanavar, H.-Lin Liu, J. Magn. Magn. Mater. 423, 343–352 (2017)CrossRef
9.
go back to reference D. Paramesh, K.V. Kumar, P.V. Reddy, J. Magn. Magn. Mater. 444, 371–377 (2017)CrossRef D. Paramesh, K.V. Kumar, P.V. Reddy, J. Magn. Magn. Mater. 444, 371–377 (2017)CrossRef
11.
go back to reference R.A. Mc Curie, Ferromagnetic Materials: Structure and Properties (Academic Press, London, 1994) R.A. Mc Curie, Ferromagnetic Materials: Structure and Properties (Academic Press, London, 1994)
12.
go back to reference A.J. Baden Fuller, Ferrites at Microwave Frequencies (Peter Peregrinus, London, 1987)CrossRef A.J. Baden Fuller, Ferrites at Microwave Frequencies (Peter Peregrinus, London, 1987)CrossRef
13.
go back to reference H. How, M.M. Devices, J.G. Webster, Wiley Encyclopaedia of Electrical and Electronics Engineering (Wiley, New York, 1999) H. How, M.M. Devices, J.G. Webster, Wiley Encyclopaedia of Electrical and Electronics Engineering (Wiley, New York, 1999)
14.
go back to reference H. Zheng, W. Weng, G. Han, P. Du, J. Phys. Chem. C 117, 12966–12972 (2013)CrossRef H. Zheng, W. Weng, G. Han, P. Du, J. Phys. Chem. C 117, 12966–12972 (2013)CrossRef
15.
go back to reference G.S. Luo, W.P. Zhou, J.D. Li, Z.Y. Zhou, G.W. Jiang, W.S. Li, S.L. Tang, Y.W. Du, J. Mater. Sci.: Mater. Electron. 28, 7259–7263 (2017) G.S. Luo, W.P. Zhou, J.D. Li, Z.Y. Zhou, G.W. Jiang, W.S. Li, S.L. Tang, Y.W. Du, J. Mater. Sci.: Mater. Electron. 28, 7259–7263 (2017)
16.
go back to reference G.S. Luo, W.P. Zhou, J.D. Li, G.W. Jiang, S.L. Tang, Y.W. Du, Trans. Nonferrous Met. Soc. China 25, 3678–3684 (2015)CrossRef G.S. Luo, W.P. Zhou, J.D. Li, G.W. Jiang, S.L. Tang, Y.W. Du, Trans. Nonferrous Met. Soc. China 25, 3678–3684 (2015)CrossRef
17.
go back to reference A.K. Singh, T.C. Goel, R.G. Mendiratta, J. Appl. Phys. 91, 6626–6629 (2002)CrossRef A.K. Singh, T.C. Goel, R.G. Mendiratta, J. Appl. Phys. 91, 6626–6629 (2002)CrossRef
18.
20.
go back to reference H.L. Ge, Z.J. Peng, C.B. Wang, Z.Q. Fu, Int. J. Mod. Phys. B 25, 3881–3892 (2011)CrossRef H.L. Ge, Z.J. Peng, C.B. Wang, Z.Q. Fu, Int. J. Mod. Phys. B 25, 3881–3892 (2011)CrossRef
22.
go back to reference M.N. Akhtar, A. Rahman, A.B. Sulong, M.A. Khan, Ceram. Int. 43, 4357–4365 (2017)CrossRef M.N. Akhtar, A. Rahman, A.B. Sulong, M.A. Khan, Ceram. Int. 43, 4357–4365 (2017)CrossRef
23.
go back to reference T. Kuru, M. Kuru, S. Bağcı, J. Mater. Sci. Mater. Electron. 29, 17160–17169 (2018)CrossRef T. Kuru, M. Kuru, S. Bağcı, J. Mater. Sci. Mater. Electron. 29, 17160–17169 (2018)CrossRef
24.
25.
go back to reference E. Rezlescu, L. Sachelarie, P.D. Popa, N. Rezlescu, IEEE Trans. Magn. 36, 3962–3967 (2010)CrossRef E. Rezlescu, L. Sachelarie, P.D. Popa, N. Rezlescu, IEEE Trans. Magn. 36, 3962–3967 (2010)CrossRef
27.
go back to reference S. Singh, A. Singh, B.C. Yadav, P. Tandon, Mater. Sci. Semicond. Process. 23, 122–135 (2014)CrossRef S. Singh, A. Singh, B.C. Yadav, P. Tandon, Mater. Sci. Semicond. Process. 23, 122–135 (2014)CrossRef
28.
go back to reference R. Deivakumaran, G. Sathya, S.K. Suresh Babu, L. John Berchmans, J. Mater. Sci. Mater. Electron. 28, 1726–1739 (2017)CrossRef R. Deivakumaran, G. Sathya, S.K. Suresh Babu, L. John Berchmans, J. Mater. Sci. Mater. Electron. 28, 1726–1739 (2017)CrossRef
29.
go back to reference Y. Köseoğlu, E. Şentürk, V. Eyüpoğlu, T. Şaşmaz, M. Kuru, S.S. Hashim, Meena, J. Supercond. Nov. Magn. 29, 2813–2819 (2016)CrossRef Y. Köseoğlu, E. Şentürk, V. Eyüpoğlu, T. Şaşmaz, M. Kuru, S.S. Hashim, Meena, J. Supercond. Nov. Magn. 29, 2813–2819 (2016)CrossRef
31.
go back to reference S.F. Mansour, M.A. Abdo, F.L. Kzar, J. Magn. Magn. Mater. 465, 176–185 (2018)CrossRef S.F. Mansour, M.A. Abdo, F.L. Kzar, J. Magn. Magn. Mater. 465, 176–185 (2018)CrossRef
32.
go back to reference M. Srivastava, R.K. Mishra, J. Singh, N. Srivastava, N.H. Kim, J.H. Lee, J. Alloy. Compd. 645, 171–177 (2015)CrossRef M. Srivastava, R.K. Mishra, J. Singh, N. Srivastava, N.H. Kim, J.H. Lee, J. Alloy. Compd. 645, 171–177 (2015)CrossRef
33.
34.
go back to reference J. Sharma, N. Sharma, J. Parashar, V.K. Saxena, D. Bhatnagar, K.B. Sharma, J. Alloy. Compd. 649, 362–367 (2015)CrossRef J. Sharma, N. Sharma, J. Parashar, V.K. Saxena, D. Bhatnagar, K.B. Sharma, J. Alloy. Compd. 649, 362–367 (2015)CrossRef
35.
go back to reference T. Md, M. Rahman, C.V. Vargas, Ramana, J. Alloy. Compd. 617, 547–562 (2014)CrossRef T. Md, M. Rahman, C.V. Vargas, Ramana, J. Alloy. Compd. 617, 547–562 (2014)CrossRef
36.
37.
go back to reference U.R. Ghodake, N.D. Chaudhari, R.C. Kambale, J.Y. Patil, S.S. Suryavanshi, J. Magn. Magn. Mater. 407, 60–68 (2016)CrossRef U.R. Ghodake, N.D. Chaudhari, R.C. Kambale, J.Y. Patil, S.S. Suryavanshi, J. Magn. Magn. Mater. 407, 60–68 (2016)CrossRef
38.
go back to reference I. Khorchani, O. Hafef, J.J. Reinosa, A. Matoussi, J.F. Fernandez, Mater. Chem. Phys. 212, 187–195 (2018)CrossRef I. Khorchani, O. Hafef, J.J. Reinosa, A. Matoussi, J.F. Fernandez, Mater. Chem. Phys. 212, 187–195 (2018)CrossRef
39.
go back to reference T. Kuru, E. Şentürk, V. Eyüpoğlu, J. Supercond. Nov. Magn. 30, 647–655 (2017)CrossRef T. Kuru, E. Şentürk, V. Eyüpoğlu, J. Supercond. Nov. Magn. 30, 647–655 (2017)CrossRef
40.
go back to reference B. Ramesh, S. Ramesh, R. Vijaya Kumar, M. Lakshmipathi Rao, J. Alloy. Compd. 513, 289–293 (2012)CrossRef B. Ramesh, S. Ramesh, R. Vijaya Kumar, M. Lakshmipathi Rao, J. Alloy. Compd. 513, 289–293 (2012)CrossRef
42.
go back to reference M.H. Dhaou, S. Hcini, A. Mallah, M.L. Bouazizi, A. Jemni, Appl. Phys. A 123, 1–9 (2017)CrossRef M.H. Dhaou, S. Hcini, A. Mallah, M.L. Bouazizi, A. Jemni, Appl. Phys. A 123, 1–9 (2017)CrossRef
45.
go back to reference E. Şentürk, Y. Köseoğlu, T. Şaşmaz, F. Alan, M. Tan, J. Alloy. Compd. 578, 90–95 (2013)CrossRef E. Şentürk, Y. Köseoğlu, T. Şaşmaz, F. Alan, M. Tan, J. Alloy. Compd. 578, 90–95 (2013)CrossRef
47.
go back to reference I. Ali, M.U. Islam, M.N. Ashiq, M.A. Iqbal, H.M. Khan, N. Karamat, J. Alloy. Compd. 579, 576–582 (2013)CrossRef I. Ali, M.U. Islam, M.N. Ashiq, M.A. Iqbal, H.M. Khan, N. Karamat, J. Alloy. Compd. 579, 576–582 (2013)CrossRef
49.
go back to reference F.S.H. Abu-Samaha, M.I.M. Ismail, Mater. Sci. Semicond. Process. 19, 50–56 (2014)CrossRef F.S.H. Abu-Samaha, M.I.M. Ismail, Mater. Sci. Semicond. Process. 19, 50–56 (2014)CrossRef
Metadata
Title
The role of the calcium concentration effect on the structural and dielectric properties of mixed Ni–Zn ferrites
Authors
Mehmet Kuru
Tuğba Şaşmaz Kuru
Sadık Bağcı
Publication date
08-02-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 6/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-00837-9

Other articles of this Issue 6/2019

Journal of Materials Science: Materials in Electronics 6/2019 Go to the issue